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Motivation
Assessing the mechanisms driving cellular responses

Complex cellular processes (proliferation, differentiation, apoptosis,...) are controlled by heterogeneous,

complex interaction networks

Frog development

Mouse forelimb development

Drosophila Development
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Complex cellular processes (proliferation, differentiation, apoptosis,...) are controlled by heterogeneous,

complex interaction networks

Cell division

Breast cancer cells

Immune system (blood cells)
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Motivation
Assessing the mechanisms driving cellular responses

Different types of networks: here, we focus on regulatory, i.e. influence networks
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Motivation
Assessing the mechanisms driving cellular responses

Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems. K. Kohn (1999)

Mol Biol Cell
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Motivation
Assessing the mechanisms driving cellular responses

Division / 

reproduction
Growth

Death

Information processing

External signals

Cancer Hallmarks. Hanahan & Weinberg (2000) Cell, 100:57-70
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Motivation
Beyond the network topology... dynamical models

Aims

Assess the behaviour driven by the network

Understand the role of individual components and interactions

Suggest missing components and interactions

Predict behaviours upon perturbations
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Beyond the network topology... dynamical models

Aims

Assess the behaviour driven by the network

Understand the role of individual components and interactions

Suggest missing components and interactions

Predict behaviours upon perturbations

Advantages of mathematical and computer tools

Precise and unambiguous description of the network & relations

In silico experiments are cheap and easy!

Static vs dynamical models of biological networks

Static models → topology of the networks (nodes and edges)

Dynamical models → dynamics of the variables associated with the network

nodes (nodes, edges, functions)

Systems Biology −→ Use of mathematics to study how genes and proteins interact

to produce the complex behaviors of a living cell (J. Tyson)
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Motivation
Beyond the network topology... dynamical models

A variety of mathematical / computational formalisms Choice depends on the data at hand,

the size of the network, the question to be assessed, etc.

Example of a small regulatory circuit

x y

System of ordinary differential equations

ODE
{

dx(t)
dt

= −y(t)
dy(t)
dt

= x(t)
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System of logical equations
{

fx(x, y) = not(y)
fy(x, y) = x
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System of logical equations
{

fx(x, y) = not(y)
fy(x, y) = x

Essentially, all models are wrong, but some are useful (George Box)
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Motivation
Beyond the network topology... dynamical models

A variety of mathematical / computational formalisms Choice depends on the data at hand,

the size of the network, the question to be assessed, etc.

N Le Novère, Nat Rev Genet 2015
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Motivation
Logical modelling

Lack of precise, quantitative data (concentrations, kinetics)

Mostly qualitative observations

Ever larger networks

Non-linear regulatory effects

Influence networks controlling cell fates
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Motivation
Logical modelling

Lack of precise, quantitative data (concentrations, kinetics)

Mostly qualitative observations

Ever larger networks

Non-linear regulatory effects

−→ Boolean networks: each regulatory component associated to a Boolean

variable representing its levels of activity, of concentration, etc.

−→ Extension to multi-valued variables
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Basics of the logical modelling framework
50 years of logical modelling

S. Kauffman (1969) Journal of Theor. Biol. 22 (3): 437-67

(Random) Boolean networks to investigate
generic self-organizing properties of gene
networks

N-K networks Random connections, N nodes with

degree K, Random regulatory (Boolean) functions

Cell types −→ attractors in gene networks

Cell differentiation −→ transitions between
attractors Focus on asymptotic behaviours
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Basics of the logical modelling framework
50 years of logical modelling

S. Kauffman (1969) Journal of Theor. Biol. 22 (3): 437-67

Gene1

Gene2

Gene3

Gene4

Gene5

Gene6

Gene7

Gene8

Gene9

Gene10

N=10, K=3

Transition function F :
Gene1 = (!Gene2 & !Gene3) | (Gene2 & !Gene7 & Gene3)

Gene2 = (!Gene8 & Gene5) | (Gene5 & Gene9)

Gene3 = (Gene6 & !Gene10 & !Gene7) | (Gene6 & Gene10 & Gene7)

Gene4 = (Gene10 & !Gene1) | (Gene7 & Gene1)

Gene5 = (Gene6 & !Gene9) | (Gene4 & !Gene9) | (Gene4 & !Gene6)

Gene6 = (!Gene10 & !Gene3) | (!Gene10 & Gene5) | (Gene10 & !Gene5 & Gene3)

Gene7 = (Gene9 & !Gene4) | (Gene9 & Gene7)

Gene8 = (!Gene7 & !Gene9) | (!Gene3) | (Gene7 & Gene9)

Gene9 = (!Gene10 & !Gene5 & Gene7) | (Gene10 & Gene5 & Gene7)

Gene10 = (!Gene4 & !Gene5 & !Gene8) | (Gene5 & Gene8)

| (Gene4 & Gene8) | (Gene4 & Gene5)

Synchronous update: xt+1 = F (xt)
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generic self-organizing properties of gene
networks

N-K networks Random connections, N nodes with

degree K, Random regulatory (Boolean) functions

Cell types −→ attractors in gene networks

Cell differentiation −→ transitions between
attractors Focus on asymptotic behaviours

R. Thomas (1973) Journal of Theor. Biol. 42: 563?85.

Boolean networks to investigate the dynamics

of gene networks

Regulated switch (Lysis vs lysogeny) of the
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Gene1
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Gene4

Gene5

Gene6

Gene7

Gene8

Gene9

Gene10

N=10, K=3

Transition function F :
Gene1 = (!Gene2 & !Gene3) | (Gene2 & !Gene7 & Gene3)

Gene2 = (!Gene8 & Gene5) | (Gene5 & Gene9)

Gene3 = (Gene6 & !Gene10 & !Gene7) | (Gene6 & Gene10 & Gene7)

Gene4 = (Gene10 & !Gene1) | (Gene7 & Gene1)

Gene5 = (Gene6 & !Gene9) | (Gene4 & !Gene9) | (Gene4 & !Gene6)

Gene6 = (!Gene10 & !Gene3) | (!Gene10 & Gene5) | (Gene10 & !Gene5 & Gene3)

Gene7 = (Gene9 & !Gene4) | (Gene9 & Gene7)

Gene8 = (!Gene7 & !Gene9) | (!Gene3) | (Gene7 & Gene9)

Gene9 = (!Gene10 & !Gene5 & Gene7) | (Gene10 & Gene5 & Gene7)

Gene10 = (!Gene4 & !Gene5 & !Gene8) | (Gene5 & Gene8)

| (Gene4 & Gene8) | (Gene4 & Gene5)

Synchronous update: xt+1 = F (xt)

R. Thomas (1973) Journal of Theor. Biol. 42: 563?85.

Boolean networks to investigate the dynamics

of gene networks

Regulated switch (Lysis vs lysogeny) of the

bacteriophage λ

Asynchronous update

Extension to multi-valued variables

xi −→ current level of product of gene i
Xi −→ whether gene i is currently transcribed

X
t
= F (x

t
)
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Basics of the logical modelling framework
The Boolean case

Regulatory graph

Components (genes, proteins, phenotypes), each gi
associated with a Boolean variable xi ∈ {0, 1}

Regulatory interactions (+, -, ±)

g1 g2

g3
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Basics of the logical modelling framework
The Boolean case

Regulatory graph

Components (genes, proteins, phenotypes), each gi
associated with a Boolean variable xi ∈ {0, 1}

Regulatory interactions (+, -, ±)

g1 g2

g3

Regulatory functions

One Boolean function fi for each component gi, defining its evolution

The ensemble of the regulatory functions defines a transition function over

the state space
f : S = Πi=1,..n{0, 1} −→ S,

f(x) = (f1(x), f2(x), . . . fn(x))

e.g. , g1 is activated in the presence of g1 or g2 and the absence of g3
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Basics of the logical modelling framework
The Boolean case

Regulatory functions

x1 = (x1|x2)&!(x3)
g1 or g2 and not g3
x2 =!x3

not g3
x3 =!x2

not g2

x1 x2 x3 f1(x) f2(x) f3(x)
g1 g2

g3
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Regulatory functions

x1 = (x1|x2)&!(x3)
g1 or g2 and not g3
x2 =!x3

not g3
x3 =!x2

not g2

x1 x2 x3 f1(x) f2(x) f3(x)
0 0 0 0 1 1

g1 g2

g3

Discrete dynamics - State Transition Graph (STG)

Nodes are states: x ∈ S = Πi=1,...n{0, . . .maxi} (e.g. expression patterns)

Directed edges are transitions: updates defined by the regulatory functions fi
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Basics of the logical modelling framework
The Boolean case

Regulatory functions

x1 = (x1|x2)&!(x3)
g1 or g2 and not g3
x2 =!x3

not g3
x3 =!x2

not g2

x1 x2 x3 f1(x) f2(x) f3(x)
0 0 0 0 1 1
0 0 1 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 1 0

g1 g2

g3

Discrete dynamics - State Transition Graph (STG)

Nodes are states: x ∈ S = Πi=1,...n{0, . . .maxi} (e.g. expression patterns)

Directed edges are transitions: updates defined by the regulatory functions fi

Synchronous update Asynchronous update
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Basics of the logical modelling framework
The Boolean case

Regulatory functions

x1 = (x1|x2)&!(x3)
g1 or g2 and not g3
x2 =!x3

not g3
x3 =!x2

not g2

x1 x2 x3 f1(x) f2(x) f3(x)
0 0 0 0 1 1
0 0 1 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 1 0

g1 g2

g3

Regulatory functions define the regulatory graph

x̄ithe state differing from x on the sole ith component by ±1

(gi, gj) ⇐⇒ ∃x ∈ S s.t. fj(x) = 1 − fj(x̄
i
)

∃ a pair of states differing on xi for which fj also differs
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Basics of the logical modelling framework
The Boolean case

Regulatory functions

x1 = (x1|x2)&!(x3)
g1 or g2 and not g3
x2 =!x3

not g3
x3 =!x2

not g2

x1 x2 x3 f1(x) f2(x) f3(x)
0 0 0 0 1 1
0 0 1 0 0 1
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 1 0

g1 g2

g3

Regulatory functions define the regulatory graph

x̄ithe state differing from x on the sole ith component by ±1

(gi, gj) ⇐⇒ ∃x ∈ S s.t. fj(x) = 1 − fj(x̄
i
)

∃ a pair of states differing on xi for which fj also differs

Exercice

what interaction(s) defined by f over states 000 and 010?

give a pair of states showing that f defines an inhibition from g3 to g2
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Basics of the logical modelling framework
Extension to multi-valued variables

Regulatory graph

Components (genes, proteins, phenotypes), each gi
associated with a discrete variable xi ∈ {0, . . .maxi}

Regulatory interactions (+, -, ±) with associated thresholds

g1 g2

g3

2

2

2

14 / 39



Basics of the logical modelling framework
Extension to multi-valued variables

Regulatory graph

Components (genes, proteins, phenotypes), each gi
associated with a discrete variable xi ∈ {0, . . .maxi}

Regulatory interactions (+, -, ±) with associated thresholds

g1 g2

g3

2

2

2

Regulatory functions

One function fi for each component gi, defining its evolution

The ensemble of the regulatory functions defines a transition function over the

state space

f : S = Πi=1,..n{0, . . .maxi} −→ S, f(x) = (f1(x), f2(x), . . . fn(x))

e.g. , g3 is activated in absence of its repressor and presence of its activator:

f3(x) =!(x1)&(x2 : 2)

14 / 39



Basics of the logical modelling framework
Extension to multi-valued variables

Discrete dynamics - State Transition Graph (STG)

Synchronous update

g1 g2

g3

2

2

2

x f(x)

000 000
001 010
010 100
020 021
011 110
021 121
100 110
101 110
120 020
111 121
121 120
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Basics of the logical modelling framework

Attractors

Defined by terminal Strongly Connected Components (SCCs) in the STG
(maximal set of states for which every state is reachable from every other state)

Stable state (SCC reduced to a single state)

Complex (or cyclic) attractor (complex SCC, i.e. with several states)

Synchronous update Asynchronous update

g1 g2

g3

2

2

2

x f(x)

000 000
001 010
010 100
020 021
011 110
021 121
100 110
101 110
120 020
111 121
121 120
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Basics of the logical modelling framework

Exercice

Draw the synchronous & asynchronous STGs for the two component

cross-inhibition circuit

Draw the synchronous & asynchronous STGs for the two component

cross-activation circuit

In general attractors are different in the synchronous and asynchronous STGs.

Is this the case for stable states?

Give two situations for which an interaction between a gene g1 and a gene g2 is

dual (positive and negative)

g1 g2 g1 g2
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Basics of the logical modelling framework

Input components

Receptors receiving external signals

No regulators, hence no logical rules (considered

as being constant)

→ disconnected STGs, one for each value of the input

g1 g2

g3in

2

2

2

x f(x) x f(x)

0000 0000 0001 0001
0010 0100 0011 0111
0100 1000 0101 1101
0200 0200 0201 0211
0110 1100 0111 1111
0210 1210 0211 1211
1000 1100 1001 1101
1010 1100 1011 1101
1200 0200 1201 0201
1110 1210 1111 1211
1210 1200 1211 1201
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Basics of the logical modelling framework

Input components

Receptors receiving external signals

No regulators, hence no logical rules (considered

as being constant)

→ disconnected STGs, one for each value of the input

Switching the input value amounts to switching STG

g1 g2

g3in

2

2

2

x f(x) x f(x)

0000 0000 0001 0001
0010 0100 0011 0111
0100 1000 0101 1101
0200 0200 0201 0211
0110 1100 0111 1111
0210 1210 0211 1211
1000 1100 1001 1101
1010 1100 1011 1101
1200 0200 1201 0201
1110 1210 1111 1211
1210 1200 1211 1201
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First illustration: the phage λ
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First illustration: the phage λ

Santillan & Mackey (2004) Biophysical J. 86:75-84

Mark Ptashne, A Genetic Switch, Third Edition, Phage Lambda Revisited. CSHL Press, 2004
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First illustration: the phage λ

Thieffry, D., Thomas, R. (1995) Dynamical behaviour of biological regulatory networks II. Immunity control in bacteriophage
lambda. Bull. Math. Biol. 57: 277- 295.
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First illustration: the phage λ

A two node model

Cro CI

2

CI Cro FCI FCro

0 0 1 2

0 1 0 2

0 2 0 1

1 0 1 0

1 1 0 0

1 2 0 0

Exercice: Give the logical expressions for the functions of CI and Cro
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First illustration: the phage λ

A two node model

Cro CI

2

CI Cro FCI FCro

0 0 1 2

0 1 0 2

0 2 0 1

1 0 1 0

1 1 0 0

1 2 0 0

Exercice: Give the logical expressions for the functions of CI and Cro







F 1

CI(CI,Cro) =!Cro

F 1

Cro(CI,Cro) =!CI&Cro :2
F 2

Cro(CI,Cro) =!CI&!Cro :2
Exercice: Draw the asynchronous STG, what are the attractors?

boxes correspond to model states, inside target states are indicated
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Handling large networks

Combinatorial explosion of the number of states
n 2^n

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576
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Handling large networks

Combinatorial explosion of the number of states
n 2^n

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576

1sec to handle 1 state −→ ∼12 days to handle the state space of a 20 node model!
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Handling large networks

Combinatorial explosion of the number of states

Complexity of related algorithms (e.g. time complexity)
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Handling large networks

Combinatorial explosion of the number of states

Tool development

Methods to analyse large STG: attractors, reachability conditions, etc

Software tools to easy the definition, analysis and simulation

23 / 39



Handling large networks

Combinatorial explosion of the number of states

Tool development

Existing software tools (not exhaustive!))

23 / 39



Methods to assess crucial properties related to model attractors

Properties derived from the model structure

Identification of stable states

Circuit analysis

24 / 39



Methods to assess crucial properties related to model attractors

Properties derived from the model structure

Identification of stable states

Circuit analysis

Properties derived from the model dynamics

Reducing the dynamics

Priority classes and mixed updating policies
Compact representations of the dynamics
Model reduction

Exploring the dynamics

Monte Carlo simulations
Model-checking techniques
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Methods to assess crucial properties related to model attractors
Circuit analysis
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Methods to assess crucial properties related to model attractors
Circuit analysis

Exercice: How do you define the sign of a circuit??
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Methods to assess crucial properties related to model attractors
Circuit analysis

Design of simple regulatory circuits in bacteria
Two cross-inhibitory genes, giving rise to two alternative stable states and induction memorisation
(Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli.
Nature 2000;403: 339-42)

A negative circuit, leading to oscillatory gene expression for proper degradation and synthesis
coefficients (Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature
2000;403:335-8)

A self-inhibitory circuit, leading to homeostatic expression of the auto-regulated gene (Becskei A,
Serrano L. Engineering stability in gene networks by autoregulation. Nature 2000;405:590-3)
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Methods to assess crucial properties related to model attractors
Circuit analysis

R. Thomas’ rules Thomas R (1988). Springer Series in Synergics 9: 180-93

A positive circuit is necessary to generate multiple attractors

A negative circuit is necessary to generate maintained oscillations
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A positive circuit is necessary to generate multiple attractors

A negative circuit is necessary to generate maintained oscillations

g1 g2

g4 g3

Two stable states
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Methods to assess crucial properties related to model attractors
Circuit analysis

R. Thomas’ rules Thomas R (1988). Springer Series in Synergics 9: 180-93

A positive circuit is necessary to generate multiple attractors

A negative circuit is necessary to generate maintained oscillations

g1 g2

g4 g3

g1 g2

g4 g3

Two stable states

One cyclic attractor

27 / 39



Methods to assess crucial properties related to model attractors
Circuit analysis

in

g1 g2
000 010

011001

in = 0

100 110

111101

in = 1

The circuit is functional in the absence of in
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Methods to assess crucial properties related to model attractors
Circuit analysis

in

g1 g2
000 010

011001

in = 0

100 110

111101

in = 1

The circuit is functional in the absence of in

in

g1 g2
000 010

011001

in = 0

100 110

111101

in = 1

Functionality context

Values of external regulators for which the circuit is functional

−→ region of the state space in which the circuit generates the expercted behaviour
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Methods to assess crucial properties related to model attractors
Priority classes and mixed updating policies

Include information about the delays when available

110

111101
g−2

g−3
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Methods to assess crucial properties related to model attractors
Priority classes and mixed updating policies

Include information about the delays when available

110

111101

X

g−2

g−3

If the de-activation of g2 is faster than that of g3, transition towards 101 will occur
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Methods to assess crucial properties related to model attractors
Priority classes and mixed updating policies

Fauré et al (2006) Bioinformatics 22(14):124-31.c

29 / 39



Methods to assess crucial properties related to model attractors
Compact representations of the dynamics

Berenguier (2013)Chaos 23, 025114

State Transition Graph
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Methods to assess crucial properties related to model attractors
Compact representations of the dynamics

Berenguier (2013)Chaos 23, 025114

State Transition Graph

SCC graph

HTG graph

30 / 39

Hierarchical Transition Graph

Merges in a single node, states that are:

irreversible (SCC reduced to a single state) and lead to the same complex SCC
or attractor

in the same complex SCC



Methods to assess crucial properties related to model attractors
Monte Carlo simulations

Mendes et al.(2018) Front. Physiol., 9, pp. 1161

Monte Carlo simulation: repeated random sampling

of the trajectories −→ reachability quantification

(number of trajectories leading to each attractor)
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Methods to assess crucial properties related to model attractors
Monte Carlo simulations

Mendes et al.(2018) Front. Physiol., 9, pp. 1161

Monte Carlo simulation: repeated random sampling

of the trajectories −→ reachability quantification

(number of trajectories leading to each attractor)

Nodes=[CI,Cro,CII,N]

Initial conditions       [0000]

Time=1.339s

Successful runs=1000

Stable states: SS1=>  [2000]  prob=0.356

Complex attractors:  CA1=>  [0200][0300] prob=0.644  size=2
Transient found: #31 states
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Illustration: eukaryotic cell cycle control
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Illustration: eukaryotic cell cycle control

S

G2

M

G0

G1

Rb E2F

Cyclin D 
Cdk4/6

APC/Cdc20

APC/Cdh1

Cyclin A 
Cdk1/2

Cyclin B  
Cdk1

p27

Cyclin E 
Cdk2

Rb p27

✓Restriction check-point

✓Spindle check-point

✓G2 check-point
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Illustration: eukaryotic cell cycle control

B. Novak, J.J. Tyson. (2004) J Theo Biol 230, 563-79

A model for restriction point control of the mammalian cell cycle.

18 ODEs

Molecular n
etw

ork re
gulatin

g th
e 

progression of m
ammalia

n cells
 

through th
e cell c

ycle.

Numeric
al s

im
ulatio

ns
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Illustration: eukaryotic cell cycle control

A. Fauré et al (2006) Bioinformatics, 22(14) 134-31

Regulatory graph 10 logical rules

CycB is active in the absence of both Cdc20 and Cdh1 
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Illustration: eukaryotic cell cycle control

A. Fauré et al (2006) Bioinformatics, 22(14) 134-31

HTG, asynchronous dynamics

CycD=0 CycD=1

Stable state

Cyclical attractor

tw
C
C
[0

112 states
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Illustration: eukaryotic cell cycle control

A. Fauré et al (2006) Bioinformatics, 22(14) 134-31

Cyclical attractor: does it fit the observed oscillations?

Synchronous update With priorities

CycA^

CycE^UbcH10v

E2F^Cdc20v

CdhA^CycAv

Cdc20^

CdhA^CycAv

UbcH10^CycEv

with 7 states
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Practical session

Definition and analysis of Thieffry & Thomas’ phage lambda model using the

software GINsim http://ginsim.org
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Further reading
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A. Naldi et al. (2018) Logical modelling and analysis of cellular regulatory
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