Logical modelling of cellular regulatory networks

Claudine Chaouiya

claudine.chaouiya@univ-amu.fr

L3 SV Bioinformatique: Réseaux et régulation COURS 4

And that's why we need a computer

February 2019

Complex cellular processes (proliferation, differentiation, apoptosis,...) are controlled by heterogeneous, complex interaction networks

Frog development

Mouse forelimb development

Drosophila Development

Complex cellular processes (proliferation, differentiation, apoptosis,...) are controlled by heterogeneous, complex interaction networks

Cell division

Breast cancer cells

Immune system (blood cells)

Different types of networks: here, we focus on regulatory, *i.e.* influence networks

Motivation

Assessing the mechanisms driving cellular responses

Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems. K. Kohn (1999) Mol Biol Cell

Motivation Assessing the mechanisms driving cellular responses

Cancer Hallmarks. Hanahan & Weinberg (2000) Cell, 100:57-70

Aims

- Assess the behaviour driven by the network
- Understand the role of individual components and interactions
- Suggest missing components and interactions
- Predict behaviours upon perturbations

Aims

- Assess the behaviour driven by the network
- Understand the role of individual components and interactions
- Suggest missing components and interactions
- Predict behaviours upon perturbations

Advantages of mathematical and computer tools

- Precise and unambiguous description of the network & relations
- In silico experiments are cheap and easy!

Aims

- Assess the behaviour driven by the network
- Understand the role of individual components and interactions
- Suggest missing components and interactions
- Predict behaviours upon perturbations

Advantages of mathematical and computer tools

- Precise and unambiguous description of the network & relations
- In silico experiments are cheap and easy!

Static vs dynamical models of biological networks

- $\bullet~$ Static models \rightarrow topology of the networks (nodes and edges)
- Dynamical models \rightarrow dynamics of the variables associated with the network nodes (nodes, edges, functions)

Systems Biology \longrightarrow Use of mathematics to study how genes and proteins interact to produce the complex behaviors of a living cell (J. Tyson)

Example of a small regulatory circuit

Example of a small regulatory circuit

 $\begin{cases} \text{System of logical equations} \\ f_x(x,y) = not(y) \\ f_y(x,y) = x \end{cases}$

Example of a small regulatory circuit System of ordinary differential equations $\frac{\frac{dx(t)}{dt}}{\frac{dy(t)}{dt}} = -y(t)$ 01 (11 System of logical equations

ODE

Essentially, all models are wrong, but some are useful (George Box)

) 10

00

N Le Novère, Nat Rev Genet 2015

Motivation Logical modelling

- Lack of precise, quantitative data (concentrations, kinetics)
- Mostly qualitative observations
- Ever larger networks
- Non-linear regulatory effects

Influence networks controlling cell fates

Motivation Logical modelling

- Lack of precise, quantitative data (concentrations, kinetics)
- Mostly qualitative observations
- Ever larger networks
- Non-linear regulatory effects

Influence networks controlling cell fates

R

inactive

Motivation

- Lack of precise, quantitative data (concentrations, kinetics)
- Mostly qualitative observations
- Ever larger networks
- Non-linear regulatory effects

 \longrightarrow Boolean networks: each regulatory component associated to a Boolean variable representing its levels of activity, of concentration, etc.

50 years of logical modelling

. Kauffman (1969) Journal of Theor. Biol. 22 (3): 437-67

- (Random) Boolean networks to investigate generic self-organizing properties of gene networks
- N-K networks Random connections, N nodes with degree K, Random regulatory (Boolean) functions
- Cell types —> attractors in gene networks
- Cell differentiation → transitions between attractors Focus on asymptotic behaviours

50 years of logical modelling

S. Kauffman (1969) Journal of Theor. Biol. 22 (3): 437-67

Gene5 = (Gene6 & !Gene9) | (Gene4 & !Gene9) | (Gene4 & !Gene6)

Gene6 = (IGene10 & IGene3) | (IGene10 & Gene5) | (Gene10 & IGene5 & Gene3)

Gene7 = (Gene9 & !Gene4) | (Gene9 & Gene7)

Gene8 = (!Gene7 & !Gene9) | (!Gene3) | (Gene7 & Gene9)

Gene9 = (!Gene10 & !Gene5 & Gene7) | (Gene10 & Gene5 & Gene7)

Gene10 = (!Gene4 & !Gene5 & !Gene8) | (Gene5 & Gene8)

| (Gene4 & Gene8) | (Gene4 & Gene5)

Synchronous update: $x^{t+1} = F(x_t)$

50 years of logical modelling

S. Kauffman (1969) Journal of Theor. Biol. 22 (3): 437-67

- (Random) Boolean networks to investigate generic self-organizing properties of gene networks
- N-K networks Random connections, N nodes with degree K, Random regulatory (Boolean) functions
- Cell types —> attractors in gene networks
- Cell differentiation → transitions between attractors Focus on asymptotic behaviours

R. Thomas (1973) Journal of Theor. Biol. 42: 563?85.

- Boolean networks to investigate the dynamics of gene networks
- Regulated switch (Lysis *vs* lysogeny) of the bacteriophage λ
- Asynchronous update
- Extension to multi-valued variables

50 years of logical modelling

S. Kauffman (1969) Journal of Theor. Biol. 22 (3): 437-67

N=10, K=3

R. Thomas (1973) Journal of Theor. Biol. 42: 563?85.

- Boolean networks to investigate the dynamics of gene networks
- Regulated switch (Lysis *vs* lysogeny) of the bacteriophage λ
- Asynchronous update
- Extension to multi-valued variables
- $x_i \longrightarrow \text{current level of product of gene i}$
- $X_i \longrightarrow$ whether gene i is currently transcribed

$$X^t = F(x^t)$$

The Boolean case

Regulatory graph

- Components (genes, proteins, phenotypes), each g_i associated with a Boolean variable $x_i \in \{0, 1\}$
- Regulatory interactions (+, -, ±)

The Boolean case

Regulatory graph

- Components (genes, proteins, phenotypes), each g_i associated with a Boolean variable $x_i \in \{0, 1\}$
- Regulatory interactions (+, -, ±)

Regulatory functions

- One Boolean function f_i for each component g_i , defining its evolution
- The ensemble of the regulatory functions defines a **transition function** over the state space

$$f: S = \prod_{i=1,..n} \{0, 1\} \longrightarrow S, f(x) = (f_1(x), f_2(x), \dots f_n(x))$$

e.g. , g_1 is activated in the presence of g_1 or g_2 and the absence of g_3

 g_2

 q_3

Basics of the logical modelling framework The Boolean case

Regulatory functions

 $x_2 = !x_3$ not g_3

 $x_3 = !x_2$ not g_2

Regulatory functions

$$\begin{array}{l} x_1 = (x_1 | x_2) \& ! (x_3) \\ g_1 \mbox{ or } g_2 \mbox{ and } \mbox{ or } g_3 \\ x_2 = ! x_3 \\ \mbox{ not } g_3 \\ x_3 = ! x_2 \\ \mbox{ not } g_2 \end{array}$$

Discrete dynamics - State Transition Graph (STG)

- Nodes are states: $x \in S = \prod_{i=1,...,n} \{0, \ldots, max_i\}$ (e.g. expression patterns)
- Directed edges are transitions: updates defined by the regulatory functions f_i

Regulatory functions

$x_1 = (x_1 x_2)\&!(x_3)$
g_1 or g_2 and not g_3
$x_2 = !x_3$
not g ₃
$x_3 = !x_2$
not g_2

Discrete dynamics - State Transition Graph (STG)

- Nodes are states: $x \in S = \prod_{i=1,...,n} \{0, \ldots, max_i\}$ (e.g. expression patterns)
- Directed edges are transitions: updates defined by the regulatory functions f_i

Regulatory functions

	$egin{array}{c} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} x_2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} x_3 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c c} f_1(x) \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ \end{array}$	$f_2(x) = \begin{array}{c} f_2(x) \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} f_3(x) \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $
$\operatorname{Hot} g_2$	1 1	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0\end{array}$	0 1	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0\end{array}$

Discrete dynamics - State Transition Graph (STG)

- Nodes are states: $x \in S = \prod_{i=1,...,n} \{0, \ldots, max_i\}$ (e.g. expression patterns)
- Directed edges are transitions: updates defined by the regulatory functions f_i

Regulatory functions

Discrete dynamics - State Transition Graph (STG)

- Nodes are states: $x \in S = \prod_{i=1,...,n} \{0, \ldots, max_i\}$ (e.g. expression patterns)
- Directed edges are transitions: updates defined by the regulatory functions f_i

Asynchronous update

Regulatory functions

$(x \mid x \geq 0 \mid (x \mid x > 0 \mid (x \mid x \geq 0 \mid (x \mid x \geq 0 \mid (x \mid x \geq 0 \mid (x \mid x > 0 \mid (x \mid x \mid x)))))))))))))))))))))))))$	x_1	x_2	x_3	$f_1(x)$	$f_2(x)$	$f_3(x)$
$x_1 = (x_1 x_2) \&! (x_3)$	0	0	0	0	1	1
g_1 or g_2 and not g_3	0	0	1	0	0	1
$x_2 = !x_3$	0	1	0	1	1	0
not g_3	0	1	1	0	0	0
$x_3 = !x_2$	1	0	0	1	1	1
not g_2	1	0	1	0	0	1
	1	1	0	1	1	0

Regulatory functions define the regulatory graph

 \bar{x}^i the state differing from x on the sole i^{th} component by $\pm \mathbf{1}$

$$(g_i, g_j) \iff \exists x \in S \ s.t. \ f_j(x) = 1 - f_j(\bar{x}^i)$$

 \exists a pair of states differing on x_i for which f_j also differs

Regulatory functions

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x_1 = (x_1 x_2) \& ! (x_3)$	x_1	$\frac{x_2}{0}$	$\frac{x_3}{0}$	$f_1(x)$	$f_2(x)$	$f_3(x)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	g_1 or g_2 and not g_3 $x_2 = !x_3$	0	0	1	0	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	not g_3 $x_2 = !x_2$	0	1	1	0	1 0 1	0
	not g_2	1	0	1	0	1 0 1	1

Regulatory functions define the regulatory graph

 \bar{x}^i the state differing from x on the sole i^{th} component by $\pm \mathbf{1}$

$$(g_i, g_j) \iff \exists x \in S \ s.t. \ f_j(x) = 1 - f_j(\bar{x}^i)$$

 \exists a pair of states differing on x_i for which f_j also differs

Exercice

- what interaction(s) defined by f over states 000 and 010?
- give a pair of states showing that f defines an inhibition from g_3 to g_2

Extension to multi-valued variables

Regulatory graph

- Components (genes, proteins, phenotypes), each g_i associated with a discrete variable x_i ∈ {0,...max_i}
- Regulatory interactions (+, -, ±) with associated thresholds

Extension to multi-valued variables

Regulatory graph

- Components (genes, proteins, phenotypes), each g_i associated with a discrete variable x_i ∈ {0,...max_i}
- Regulatory interactions (+, -, ±) with associated thresholds

Regulatory functions

- One function f_i for each component g_i , defining its evolution
- The ensemble of the regulatory functions defines a **transition** function over the state space

$$f: S = \prod_{i=1,\dots n} \{0, \dots max_i\} \longrightarrow S, \ f(x) = (f_1(x), f_2(x), \dots f_n(x))$$

e.g. , g_3 is activated in absence of its repressor and presence of its activator:

$$f_3(x) = !(x_1) \& (x_2 : 2)$$

 g_2

 g_3

 g_1

Extension to multi-valued variables

15/39

Extension to multi-valued variables

15/39

Attractors

Defined by terminal Strongly Connected Components (SCCs) in the STG (maximal set of states for which every state is reachable from every other state)

- Stable state (SCC reduced to a single state)
- Complex (or cyclic) attractor (complex SCC, i.e. with several states)

x	f(x)
000	000
001	010
010	100
020	021
011	110
021	121
100	110
101	110
120	020
111	121
121	120

Exercice

- Draw the synchronous & asynchronous STGs for the two component cross-inhibition circuit
- Draw the synchronous & asynchronous STGs for the two component cross-activation circuit
- In general attractors are different in the synchronous and asynchronous STGs. Is this the case for stable states?
- Give two situations for which an interaction between a gene g_1 and a gene g_2 is dual (positive and negative)

Basics of the logical modelling framework

Input components

- Receptors receiving external signals
- No regulators, hence no logical rules (considered as being constant)
- \rightarrow disconnected STGs, one for each value of the input

x	f(x)	x	f(x)
0000	0000	0001	0001
0010	0100	0011	0111
0100	1000	0101	1101
0200	0200	0201	0211
0110	1100	0111	1111
0210	1210	0211	1211
1000	1100	1001	1101
1010	1100	1011	1101
1200	0200	1201	0201
1110	1210	1111	1211
1210	1200	1211	1201

Basics of the logical modelling framework

Input components

- Receptors receiving external signals
- No regulators, hence no logical rules (considered as being constant)
- \rightarrow disconnected STGs, one for each value of the input

x	f(x)	x	f(x)
0000	0000	0001	0001
0010	0100	0011	0111
0100	1000	0101	1101
0200	0200	0201	0211
0110	1100	0111	1111
0210	1210	0211	1211
1000	1100	1001	1101
1010	1100	1011	1101
1200	0200	1201	0201
1110	1210	1111	1211
1210	1200	1211	1201

Switching the input value amounts to switching STG

Santillan & Mackey (2004) Biophysical J. 86:75-84

Mark Ptashne, A Genetic Switch, Third Edition, Phage Lambda Revisited. CSHL Press, 2004

Thieffry, D., Thomas, R. (1995) Dynamical behaviour of biological regulatory networks II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57: 277- 295.

First illustration: the phage λ A two node model

Exercice: Give the logical expressions for the functions of CI and Cro

First illustration: the phage λ A two node model

Exercice: Give the logical expressions for the functions of CI and Cro $\begin{cases} F_{CI}^{1}(CI, Cro) = !Cro \\ F_{Cro}^{2}(CI, Cro) = !CI\&Cro: 2 \\ F_{Cro}^{2}(CI, Cro) = !CI\&!Cro: 2 \\ F_{Cro}^{2}(CI, Cro) = !Cro: 2 \\ F_{Cro}^{2}(CI, Cro) = !CI\&!Cro: 2 \\ F_{Cro}^{2}(CI, Cro) =$

First illustration: the phage λ A two node model

Exercice: Give the logical expressions for the functions of CI and Cro

$${ \operatorname{ro} \left\{ \begin{matrix} F_{CI}^1\left(CI,Cro\right)= !\,Cro\\ F_{Cro}^1\left(CI,Cro\right)= !\,CI\&Cro:2\\ F_{Cro}^2\left(CI,Cro\right)= !\,CI\&!\,Cro:2 \end{matrix} \right. } \right. }$$

Exercice: Draw the asynchronous STG, what are the attractors?

Exercice: Give the logical expressions for the functions of CI and Cro

$$\begin{aligned} & \mathbf{0} \begin{cases} F_{CI}^1(CI,Cro) = !\,Cro \\ F_{Cro}^1(CI,Cro) = !\,CI\&Cro:2 \\ F_{Cro}^2(CI,Cro) = !\,CI\&!\,Cro:2 \end{cases} \end{aligned}$$

Exercice: Draw the asynchronous STG, what are the attractors?

boxes correspond to model states, inside target states are indicated

Handling large networks

Combinatorial explosion of the number of states

n	2^n
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16384
15	32768
16	65536
17	131072
18	262144
19	524288
20	1048576

Handling large networks

^ • • •

Combinatorial explosion of the number of states

п	2/11
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16384
15	32768
16	65536
17	131072
18	262144
19	524288
20	1048576

1sec to handle 1 state $\longrightarrow \sim$ 12 days to handle the state space of a 20 node model!

Combinatorial explosion of the number of states

Complexity of related algorithms (e.g. time complexity)

Size Complexity	10	20	30	40	50	60
n	.00001s	.00002s	.00003s	.00004s	.00005s	.00006s
n²	.0001s	.0004s	.0009s	.0016s	.0025s	.0036s
n ³	.001s	.008s	.027s	.064s	.125s	.216s
n⁵	.1s	3.2s	24.3s	1.7 mn	5.2 mn	13 mn
2 ⁿ	.0001s	1.0s	17.9 mn	12.7 days	35.7 century	366 century
3 ⁿ	.059s	58 mn	6.5 years	3855 century	2x10 ⁸ century	1.3x10 ¹³ century

Assuming 10⁶ operations per second

Combinatorial explosion of the number of states Tool development

- Methods to analyse large STG: attractors, reachability conditions, etc
- Software tools to easy the definition, analysis and simulation

V

Combinatorial explosion of the number of states Tool development

Tool Range Updating Feature Syst. Req. Adam Multi-val Sea/Sync SS & CA Web serv A/Synch, Ranked async, Time BooleanNet Bool Switch to PLDE Python sync, Stoch async Attractors (reduc.) BoolNet R Bool A/Synch, Stoch async **RBN** generation BoolSim / Squad Bool A/Sync Attractors (BDD) Switch Java to ODE **Cell Collective** Stochastic Bool Sync Web serv CellNetAnalyzer Bool Structural analysis Matlab (Mini. Int. Sets) CellNOpt Bool Sync Model training R / Cytoscape plugin GINsim Multi-val A/Sync. priorities Stable states. Java functionality, HTG MaBoss Bool continuous/discrete time Markov processes C++

Existing software tools (not exhaustive!))

Properties derived from the model structure

- Identification of stable states
- Circuit analysis

Properties derived from the model structure

- Identification of stable states
- Circuit analysis

Properties derived from the model dynamics

- Reducing the dynamics
 - Priority classes and mixed updating policies
 - Compact representations of the dynamics
 - Model reduction
- Exploring the dynamics
 - Monte Carlo simulations
 - Model-checking techniques

Exercice: How do you define the sign of a circuit??

Design of simple regulatory circuits in bacteria

- Two cross-inhibitory genes, giving rise to two alternative stable states and induction memorisation (Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 2000;403: 339-42)
- A negative circuit, leading to oscillatory gene expression for proper degradation and synthesis coefficients (Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature 2000;403:335-8)
- A self-inhibitory circuit, leading to homeostatic expression of the auto-regulated gene (Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature 2000;405:590-3)

R. Thomas' rules

Thomas R (1988). Springer Series in Synergics 9: 180-93

- A positive circuit is necessary to generate multiple attractors
- A negative circuit is necessary to generate maintained oscillations

R. Thomas' rules

Thomas R (1988). Springer Series in Synergics 9: 180-93

- A positive circuit is necessary to generate multiple attractors
- A negative circuit is necessary to generate maintained oscillations

Two stable states

R. Thomas' rules

Thomas R (1988). Springer Series in Synergics 9: 180-93

- A positive circuit is necessary to generate multiple attractors
- A negative circuit is necessary to generate maintained oscillations

One cyclic attractor

Two stable states

The circuit is functional in the absence of in

The circuit is functional in the absence of in

Functionality context

Values of external regulators for which the circuit is functional

 \longrightarrow region of the state space in which the circuit generates the expercted behaviour

Methods to assess crucial properties related to model attractors Priority classes and mixed updating policies

Include information about the delays when available

Include information about the delays when available

If the de-activation of g_2 is faster than that of g_3 , transition towards 101 will occur

Priority classes and mixed updating policies

Fauré et al (2006) Bioinformatics 22(14):124-31.c

Compact representations of the dynamics

Berenguier (2013)Chaos 23, 025114

Logical functions		
$K_{CI}(s) = 2$	$\neg Cro \lor CII$	
$K_{Cro}(s) = 3$	¬CI:2 ∧ ¬Cro:3	
$K_{Cro}(s) = 2$	$\neg CI:2 \land Cro:3$	
$K_{CII}(s) = 1$	$\neg CI:2 \land \neg Cro:3 \land N$	
$K_N(s) = 1$	$\neg CI \land \neg Cro:2$	

Compact representations of the dynamics

Berenguier (2013)Chaos 23, 025114

Compact representations of the dynamics

Berenguier (2013)Chaos 23, 025114

Compact representations of the dynamics

Berenguier (2013)Chaos 23, 025114

Hierarchical Transition Graph

Merges in a single node, states that are:

- irreversible (SCC reduced to a single state) and lead to the same complex SCC or attractor
- in the same complex SCC

Monte Carlo simulations

Mendes et al.(2018) Front. Physiol., 9, pp. 1161

Monte Carlo simulation: repeated random sampling of the trajectories — reachability quantification (number of trajectories leading to each attractor)

Mendes et al.(2018) Front. Physiol., 9, pp. 1161

Monte Carlo simulation: repeated random sampling of the trajectories \longrightarrow reachability quantification (number of trajectories leading to each attractor)

Nodes=[Cl.Cro.Cl.N] Initial conditions [0000] Time=1.339 Successful runs=1000 Stable states: SS1=> [2000] prob=0.356 Complex attractors: CA1=> [0200][0300] prob=0.644 size=2 Transient found: #31 states

Illustration: eukaryotic cell cycle control

Illustration: eukaryotic cell cycle control

A model for restriction point control of the mammalian cell cycle.

Illustration: eukaryotic cell cycle control

A. Fauré et al (2006) Bioinformatics, 22(14) 134-31

Cyc

10 logical rules

CycD $(\overline{CvcD} \land \overline{CvcE} \land \overline{CvcA} \land \overline{CvcB})$ $\vee (p27 \land \overline{CycD} \land \overline{CycB})$ $(\overline{Rb} \land \overline{CycA} \land \overline{CycB}) \lor (p27 \land \overline{Rb} \land \overline{CycB})$ CycE $(E2F \land \overline{Rb})$ CycA $(E2F \land Rb \land Cdc20 \land (Cdh1 \land Ubc))$ $\vee (CycA \wedge \overline{Rb} \wedge \overline{Cdc20} \wedge \overline{(Cdh1 \wedge Ubc)})$ $(\overline{CvcD} \land \overline{CvcE} \land \overline{CvcA} \land \overline{CvcB})$ $\vee (p27 \land (CvcE \land CvcA) \land \overline{CvcB} \land \overline{CvcD})$ Cdc20 CycB $(\overline{CycA1} \land \overline{CycB}) \lor (Cdc20) \lor (p27 \land \overline{CycB})$ UbcH10 $(\overline{Cdh1}) \lor (Cdh1 \land Ubc$ \land (Cdc20 \lor CycA \lor CycB)) cdh1 $(\overline{Cdc20} \wedge \overline{Cdh1})$ CycB CycB is active in the absence of both Cdc20 and Cdh1

Illustration: eukaryotic cell cycle control

A. Fauré et al (2006) Bioinformatics, 22(14) 134-31

Practical session

Definition and analysis of Thieffry & Thomas' phage lambda model using the software GINsim http://ginsim.org

- W. Abou-Jaoudé *et al* (2016) Logical modeling and dynamical analysis of cellular networks, Frontiers in Genetics, Vol. 7, pp 94 https://www.frontiersin.org/articles/10.3389/fgene.2016.00094/full
- A. Naldi *et al.* (2018) Logical modelling and analysis of cellular regulatory networks with GINsim 3.0, Front. Physiol., 9, pp. 646

http://dx.doi.org/10.3389/fphys.2018.00646

 Thieffry D, Thomas R. (1995) Dynamical behaviour of biological regulatory networks–II. Immunity control in bacteriophage lambda. Bull Math Biol. 57(2):277-97.

https://link.springer.com/article/10.1007%2FBF02460619?LI=true

A. Fauré *et al.* (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle Bioinformatics, Vol, 22, Issue 14, pp:e124-31
https://doi.org/10.1093/bioinformatics/btl210