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Growth, Division, Death, Decision making (differentiation), etc.
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il Cells are capable of numerous operations: Movement, Energy supply, Signalling,
}"! Growth, Division, Death, Decision making (differentiation), etc.

Heterogeneous interaction networks control and drive these operations

é* | — mostly focus on regulatory networks, i.e. interactions between genes and their
‘ products (proteins): transcriptional and post-transcriptional regulations



Cell: the stuctural and functional unit of life

Intracellular Signaling Networks Regulate the Operations of the Cancer Cell

lr Hanahan & Weinberg (2011) Cell, 144:646-74
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Regulatory network modelling

— Use of mathematics to study how genes and proteins interact to produce the
h complex behaviors of a living cell? (J. Tyson)
Aims
@ Understand the role of individual components and interactions
@ Suggest missing components and interactions
@ Predict behaviours upon perturbations

l || Advantages of mathematical and computer tools

f @ Precise and unambiguous description of network

I @ In silico experiments are cheap and easy!

vq @ A computational model is a generator of predictions




Regulatory network modelling

— Use of mathematics to study how genes and proteins interact to produce the
complex behaviors of a living cell? (J. Tyson)
Aims

@ Understand the role of individual components and interactions

@ Suggest missing components and interactions

@ Predict behaviours upon perturbations

Advantages of mathematical and computer tools
@ Precise and unambiguous description of network
@ In silico experiments are cheap and easy!
@ A computational model is a generator of predictions

Static vs dynamical models of biological networks
- Static models — topology of the networks (nodes and edges)

- Dynamical models — dynamics of the variables associated with the network
nodes (nodes, edges, functions)



Regulatory network modelling

Plenty of modelling frameworks, spanning different levels of details, e.g.

Logical models
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®

@ Petri nets
@ Process algebras
@ Constraint-based models
@ Ordinary differential equations (ODEs)
@ Stochastic master equations
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Ordinary differential equation models of regulatory networks

adapted from H. de Jong
@ Concentration of proteins, mMRNAs, and other molecules at time-point ¢

represented by continuous variable z;(t) € IR* (concentration level for
individual cell or cell population)

@ Regulatory interactions, controlling synthesis and degradation, modelled by
ODEs J
o =i=1@),
where © = [z1,...z,], and f(z) is a rate law

@ Well-established theory for modeling gene regulatory networks using ODE
models — Mathematical specification of rate laws

Text books

Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics, Portland Press
Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall




Ordinary differential equation models

Interlude! adapted from E. Gjini

h Mathematical equations used to study time-dependent processes

@ A differential equation is an algebraic equation involving the function and its
derivatives

@ A derivative is a function representing the change of a dependent variable with
respect to an independent variable (slope of a curve)

¥ . Large derivative: fast change

' | . Small derivative: slow change

. Zero derivative: no change

(! . Positive derivative: Y 1 if z 1

| . Negative derivative: Y | if x 1




Ordinary differential equation models

Interlude! adapted from E. Gjini

Y(t) : quantity of interest (the dependent variable)
e.g. concentration of a given molecule at time ¢
or level of expression of a gene at time ¢

A continuous function of time ¢ (the independent variable)

The change of Y per unit of time : dY/dt Defined by the limit process:
dy . Y(t+At) —Y(t
dt “m“*“%

the derivative of Y with respect to time.



Ordinary differential equation models

Interlude! adapted from E. Gjini

h Example of exponential growth: Y'(¢), number of bacteria over time

r: growth rate of the population per unit of time

¥ Y(t+dt) ~Y(t)+rY(t)dt

I Y(H‘dfli—y(t) ~ TY(t)

{ limdt—mw ~rY(t) £
L L =@
:\




Ordinary differential equation models

Interlude! adapted from E. Gjini

h Example of exponential growth: Y'(¢), number of bacteria over time

r: growth rate of the population per unit of time

' \ Y(t+dt) ~Y(t) +rY(t)dt /1
|| RGOS TORS e

N limaro X HDY0 ~ gy () 2 g

IV DO — ry(t)

solution: Y (t) = Ype' I
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Interlude! adapted from E. Gjini

h Example of exponential growth: Y'(¢), number of bacteria over time

r: growth rate of the population per unit of time

' \ Y(t+dt) ~Y(t) +rY(t)dt /1
|| RGOS TORS e

N limaro X HDY0 ~ gy () 2 g

IV DO — ry(t)

solution: Y (t) = Ype' I

;‘ How long to double the population? ¢ doubling time



Ordinary differential equation models

Interlude! adapted from E. Gjini

h Example of exponential growth: Y'(¢), number of bacteria over time

r: growth rate of the population per unit of time

' \ Y(t+dt) ~Y(t) +rY(t)dt /1
|| RGOS TORS e

N limaro X HDY0 ~ gy () 2 g

IV DO — ry(t)

solution: Y (t) = Ype' I

;‘ How long to double the population? § doubling time 2Yy = Ype™ = § = @



Ordinary differential equation models

Example of a simple reaction network adapted from B. Ingalls
Reaction rates follow mass action, production of S; allosteriscally inhibited with a strong cooperative
lf binding of n molecules of Sz (s; = [S;]):

—— V1 = e, Vs = k3s1, vs = kss1
v1| ~<_ s T+(s2/K)
l ) l
\
| v = ko, va = kas2




Ordinary differential equation models

Example of a simple reaction network adapted from B. Ingalls
Reaction rates follow mass action, production of S; allosteriscally inhibited with a strong cooperative
lf binding of n molecules of Sz (s; = [S;]):
| | = e, vs =k =k
|- -=-2 v1 = 1+(52/K)”’v3_ 381, U5 = K581

’l' \\n’l' v2 = ko, v4 = k452

ds
i | C1lt(t) — 1+(521(€t1)/K)" — ]{,‘381(15) — k‘581(t)
| U3 V4
4‘ l l ng(t) = ko + k551( ) — k482(t)
”




Ordinary differential equation models

Example of a simple reaction network adapted from B. Ingalls
Reaction rates follow mass action, production of S; allosteriscally inhibited with a strong cooperative
lf binding of n molecules of Sz (s; = [S;]):

=k = =
v|1|__"‘\ 'U|2 V1= Gy /Ryn o UB kasi, vs = kss1
\
\
l .l v2 = ka2, va = kas2
i ST — U5 — Sy
' dsi(t) _ ki
i | | dt  I+(sz(t)/K)" k3si(t) — kssi(t)
V3 (2
i
| ds
! 1 ! 9200 — ky 4 kss1(t) — kasa(t)
I (conc.time_l) k; = 20,kg =5, (conc.) K =1, (time_l) k3 = kg = 5, ks = 2, andn = 4, arbitrary units

in
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| Time Concentration of S,

Concentrations plotted against time Concentration s; plotted against so /2«



Ordinary differential equation models

Example of a simple reaction network adapted from B. Ingalls

lf (conc.time™ 1)k = 20,kg = 5, (conc.) K = 1, (time™ ') kg = kg = 5, kg = 2, andn = 4, arbitrary units

2 2

. o 15
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& : »
§ £ steady state
8 ]
5
(5]
| \1 05 Initial condition
| v
i o 05 1 15 (] 1 15 2
Time Concentration of S,
I' . . . . .
I Concentrations plotted against time Concentration s; plotted against s
I Phase portrait
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Ordinary differential equation models

Example of a simple reaction network adapted from B. Ingalls
| §
g 12
g 1
8 o
| é 0.6}
l .
R
.I Cem:ennmm:ﬂs‘ '
‘ Phase portrait
i ds
‘ i = 110, 5:(0)
i so(t
i 20 = g(s1(1), 52(1))

The motion in the phase plane at (s1, s2)
| isgiven by (f(s1,s2),9(s1,52))

5,=g(51.8)

Direction field

11/24



Ordinary differential equation models

Example of a simple reaction network

The s1-nullcline (or zero-growth isocline) is the curve

dsy
dt

adapted from B. Ingalls

=0

The steady state (or fixed point) of the system is located where all of the nullclines

H Ldsi(t) _ dsa(t) _
intersect: =~ = =22 =0

It is stable, because if we move a bit away, the system will return to it.
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Ordinary differential equation models

Another case of a reaction network acapted rom B. Ingalls
lf v| I--;:<:--I7J|
ll,’/ \\‘,f “h = mmorm — kesi(®)
| bi SI 5 = e — kase(t)
' 1] U3 V4

13/24



Ordinary differential equation models

Another case of a reaction network adapted from B. Ingalls
h ?Jlll-::"‘::-lJ2 s () Ky
17 Nl @ = TRy — kasi(t)
1 1
S S. dso(t) k
| ] O ——

'\ U3 V4

il with balanced inhibition strength, k1 = ko = 20, K1 = K9 = 1,kz = k4 = 5,n1 = ng = 4.

-
= ——
Concentration

stable stable
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Ordinary differential equation models

Another case of a reaction network acapted rom B. Ingalls
lf v| I--;:<:--I7J|
ll,’/ \\‘,f “h = mmorm — kesi(®)
| bi SI 5 = e — kase(t)
' 1] U3 V4

with unbalanced inhibition strength, k1 = ko = 20, K1 = Ko = 1, k3 = kg = 5,n] = 4,no = 1.
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Ordinary differential equation models

lr Exercice from B. Ingalls

Consider the following system:

{ = —y(1)

What are the nuliclines? The steady state?

i/l Sketch the direction field by drawing the direction vectors in the x — y phase plane
|| for (17 0)7 (17 1)7 (07 1)7 (_17 1) (_17 0)7 (_17 _1)7 (07 _1)7 (17 _1)-

14/24



Ordinary differential equation models

lr Exercice from B. Ingalls

Consider the following system:

{ = —y(1)

What are the nuliclines? The steady state?

1 '| Sketch the direction field by drawing the direction vectors in the = — y phase plane
W for (17 0)7 (17 1)7 (07 1)7 (_17 1) (_17 0)7 (_17 _1)7 (07 _1)7 (17 _1)
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Ordinary differential equation models

Example: ODE model of a genetic regulatory system w/ end-product inhibition

from H. de Jong

L1 = k17(23) — N171

A
d
' ! Genea CF = K2 T1 — Y222
| l
X; -~ MRNA dog _
| I [ Gt = ma w2 — oy

: z1: concentration of mRNA a
enzyme | zo:  concentration of protein A
. x3:  concentration of metabolite K

inactive X ki:  production constants
' | reoressor J — | v degradation contants
) — ’ ; T a decreasing non-linear regulatory function
}‘i metabolite ranging from 0 to 1




Ordinary differential equation models

Genetic regulatory networks
lf Non linear regulatory functions

T h*(z;,65,m)

m

h+(fL', 07 m) = Imzw
\ 0 % o
" ‘I T 5*(z;,65)
) ] x <0, s (z,0)=0
| x>0,s5(z,0)=1
f 0 o —
'W /
|
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Ordinary differential equation models

Genetic regulatory networks
lf Non linear regulatory functions

T h*(z;,65,m)

Exercice: Give the expression for the inhibitory Hill function
What is the effect when increasing m?
m is called the cooperativity parameter

16/24



Ordinary differential equation models

Gardner et al. 2000
h Genetic regulatory networks: the toogle switch

Inducer 2

Promoter 1
Ropressor 2

A Reprossor 1 Reporter
'[ Promoter 2

Inducer 1

Toggle switch design: Repressor 1 inhibits transcription

|

' from Promoter 1 and is induced by Inducer 1. Repressor
|

inhibits transcription from Promoter 2 and is induced by

W Inducer 2.

du _ _oq
i dt — 1+vP

— (23] _
14wy v

w concentration of rep.1

v concentration of rep.2

«; rate of synthesis of rep. 1

ay rate of synthesis of rep. 2

3 cooperativity of repression of prom. 2

© 00 06 0 0 I

~ cooperativity of repression of prom. 1

17/24



Ordinary differential equation models

Gardner et al. 2000

l Genetic regulatory networks: the toogle switch
r a b

~State 1 Inducer 2
(high state) I—_l_

duldt =0 P g ) Repressor 2 Repressor 1 Reporter

Separatrix _-——‘_———mmm
v dv/dt:o'/,
State 2 =0 Inducer 1

(low state) [ |: ) . P P

.- Unstable : dv/dt=0  State2 Toggle switch design: Repressor 1 inhibits transcription
"X steady-state . (low state) o

| from Promoter 1 and is induced by Inducer 1. Repressor

u inhibits transcription from Promoter 2 and is induced by
I C
! Mono- Inducer 2.
4. Bistable du _ _aj
I dt — 140P u
i 3
f g dv a3
i ) - dt — 1+u?
! o stable @ w concentration of rep.1
state1 @ v concentration of rep.2
i o o .
1 962) 962) @ « rate of synthesis of rep. 1
Figure 2 Geometric structure of the toggle equations. a, A bistable toggle network with .
balanced promoter strengths. b, A monostable toggle network with imbalanced promoter @ «o rate of syntheS|s of rep. 2
strengths. ¢, The bistable region. The lines mark the transition (bifurcation) between ° .. £ . £ 2
L bistability and monostability. The slopes of the bifurcation lines are determined by the B cooperatlvny Ot repression of prom.
exponents 3 and v for large o4 and «v,. d, Reducing the cooperativity of repression (8 and o ~ cooperativity of repression of prom. 1

I +) reduces the size of the bistable region. Bifurcation lines are illustrated for three different
| values of 8 and . The bistable region lies inside of each pair of curves.
17/24



Ordinary differential equation models

Exercice: ODE model of a genetic cross-inhibition adapted from H. de Jong

| i ]
a b
Can you devise the remaining model equations?
dfi;a = Krahy (Tpb, Opp) s (Tpas Opa) — VraTra

) dzpa _
l 2t =

||

I depy

i at

dopb _

{-‘ at

) _ 2

:{; hy (2,0) = oy

18/24



Ordinary differential equation models

Exercice: ODE model of a genetic cross-inhibition adapted from H. de Jong
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a b
Can you devise the remaining model equations?
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Ordinary differential equation models

Exercice: ODE model of a genetic cross-inhibition adapted from H. de Jong
<AL_AL—‘—B‘
-
a b
|
| 4epe = krahy (@pb, Opp)hy (Tpa, Opa) = Yra®ra
i protein B e
4' s 1 d;z;a = KpaTra — YpaTpa
'8
|| 2 d _ B
H‘é Z:b = Hrbhz (zpav epa)hz (zpbv pr) — YrbTrb
i e mRAD
& : ? dwpb — " "
peteinA at — BpbTrb — YpbTpb
. 1 ~ )
T T hy (@,6) = g

18/24



A note on stochastic models

adapted from H. de Jong

@ ODEs are valid for homogeneous systems and large numbers of molecules
@ Stochasticity arises due to the small number of molecules

@ Consider discrete amounts of molecules, homogeneous system, no spatial
restrictions

B;: transition probability that reaction j brings the system to state X,
il TR transition probability to leave state X with the occurrence of reaction j
|

f| the master equation gives the evolution of X

Z — a;p(X,1)).

hard to solve — stochastic simulation algorithm (Gillespie 77)

19/24



A note on stochastic models

l adapted from H. de Jong

Kierzek et al. 2001 proposed 10 elementary reactions for the transcription and
translation of a procaryotic gene

(! A+A+r A,
4. As +DNA, «— A; - DNA,

\ RNAP + DNA, < RNAP - DNA,
|| RNAP - DNA, —» RNAP + DNA,
i +RNA,

}‘{ B+B+— B,
i B> + DNA, «— B: - DNA,
& By - DNA, + Ay «— Ay - By - DNA,

AQ . DNAb + By «— A2 -Bs - DNA(,

20/24



Ordinary differential equation models

l | Oscillatory behaviours from B. Ingalls
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Ordinary differential equation models

l Oscillatory behaviours from B. Ingalls
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Ordinary differential equation models

A note on bifurcation analysis from B. Ingalls

@ Variation in parameter values can cause qualitative changes in long-term
system behaviour (e.g. location and/or number of steady states)

_'\ @ Parameter values at which such changes occur are called bifurcation points

22/24



Ordinary differential equation models

A note on bifurcation analysis from B. Ingalls
@ Variation in parameter values can cause qualitative changes in long-term
system behaviour (e.g. location and/or number of steady states)

1’ @ Parameter values at which such changes occur are called bifurcation points

|

| :

| Exercice:

i dz(t)

hi =(a—1)z(t
N S = (a=De()
|| What s the sign of the rate of change dz/dt for positive and negative values of x?
"1l  Under which condition the steady state at « = 0 is stable?

22/24



Ordinary differential equation models

A note on bifurcation analysis from B. Ingalls

@ Variation in parameter values can cause qualitative changes in long-term
system behaviour (e.g. location and/or number of steady states)

@ Parameter values at which such changes occur are called bifurcation points

Exercice:
PO _ (a1t
What is the sign of the rate of change dx/dt for positive and negative values of x?
Under which condition the steady state at x = 0 is stable?
the steady state is stable if a < 1, unstable if a > 1.
The parameter value a = 1 is thus a bifurcation point for this system.

22/24



Ordinary differential equation models

A note on bifurcation analysis

S, Concentration
i)

k=10

§, Concentration
N

(i) k=162
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S‘ Concentration S‘ Concentration
g ¢ k=20 § 4\ k=3
® E \
€ €
g 2 g 2
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Q o
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w TT——— @ -
o 0
0 2 ) 4 V) 2 4 6
Sl Concentration 51 Concentration

steady state S, concentration

from B. Ingalls

0 N ® m = w

= unstable
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