Dynamical modelling of biological networks

Claudine Chaouiya

claudine-chaouiya@univ-amu.fr

Master Bioinformatics - Marseille Luminy

November 2018

Cell: the stuctural and functional unit of life

Cells are capable of numerous operations: Movement, Energy supply, Signalling, Growth, Division, Death, Decision making (differentiation), etc.

Cell: the stuctural and functional unit of life

Cells are capable of numerous operations: Movement, Energy supply, Signalling, Growth, Division, Death, Decision making (differentiation), etc.

Heterogeneous interaction networks control and drive these operations

 \rightarrow mostly focus on regulatory networks, *i.e.* interactions between genes and their products (proteins): transcriptional and post-transcriptional regulations

Cell: the stuctural and functional unit of life

Intracellular Signaling Networks Regulate the Operations of the Cancer Cell

Hanahan & Weinberg (2011) Cell, 144:646-74

Regulatory network modelling

→ Use of mathematics to study how genes and proteins interact to produce the complex behaviors of a living cell? (J. Tyson)
Aims

- Understand the role of individual components and interactions
- Suggest missing components and interactions
- Predict behaviours upon perturbations

Advantages of mathematical and computer tools

- Precise and unambiguous description of network
- In silico experiments are cheap and easy!
- A computational model is a generator of predictions

Regulatory network modelling

→ Use of mathematics to study how genes and proteins interact to produce the complex behaviors of a living cell? (J. Tyson)

Aims

- Understand the role of individual components and interactions
- Suggest missing components and interactions
- Predict behaviours upon perturbations

Advantages of mathematical and computer tools

- Precise and unambiguous description of network
- In silico experiments are cheap and easy!
- A computational model is a generator of predictions

Static vs dynamical models of biological networks

- Static models → topology of the networks (nodes and edges)
- Dynamical models \to dynamics of the variables associated with the network nodes (nodes, edges, functions)

Regulatory network modelling

Plenty of modelling frameworks, spanning different levels of details, e.g.

- Logical models
- Petri nets
- Process algebras
- Constraint-based models
- Ordinary differential equations (ODEs)
- Stochastic master equations

• ..

Ordinary differential equation models of regulatory networks

adapted from H. de Jong

- Concentration of proteins, mRNAs, and other molecules at time-point t represented by continuous variable $x_i(t) \in IR^+$ (concentration level for individual cell or cell population)
- Regulatory interactions, controlling synthesis and degradation, modelled by ODEs

$$\frac{dx}{dt} = \dot{x} = f(x),$$

where $x = [x_1, \dots x_n]$, and f(x) is a rate law

 Well-established theory for modeling gene regulatory networks using ODE models → Mathematical specification of rate laws

Text books

Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics, Portland Press Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

Interlude! adapted from E. Gjini

Mathematical equations used to study time-dependent processes

- A differential equation is an algebraic equation involving the function and its derivatives
- A derivative is a function representing the change of a dependent variable with respect to an independent variable (slope of a curve)
 - . Large derivative: fast change
 - . Small derivative: slow change
 - Zero derivative: no change
 - . Positive derivative: $Y \uparrow \text{if } x \uparrow$
 - . Negative derivative: $Y \downarrow$ if $x \uparrow$

Interlude! adapted from E. Gjini

Y(t): quantity of interest (the dependent variable)
e.g. concentration of a given molecule at time tor level of expression of a gene at time t

A continuous function of time t (the independent variable) The change of Y per unit of time : dY/dt Defined by the limit process:

$$\frac{dY}{dt} = \lim_{\Delta t \to 0} \frac{Y(t + \Delta t) - Y(t)}{\Delta t}$$

the derivative of Y with respect to time.

Interlude!

adapted from E. Gjini

Example of exponential growth: Y(t), number of bacteria over time

r: growth rate of the population per unit of time

$$Y(t+dt) \simeq Y(t) + rY(t)dt$$

$$\frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t)$$

$$\lim_{dt \to 0} \frac{Y(t+dt) - Y(t)}{dt} \simeq rY(t) \triangleq \frac{dY(t)}{dt} = rY(t)$$

Interlude! adapted from E. Gjini

Example of exponential growth: Y(t), number of bacteria over time

r: growth rate of the population per unit of time

$$Y(t+dt) \simeq Y(t) + rY(t)dt$$

$$\frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t)$$

$$\lim_{dt\to 0} \frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t) \triangleq \frac{dY(t)}{dt} = rY(t)$$

solution:
$$Y(t) = Y_0 e^{rt}$$

Interlude! adapted from E. Gjini

Example of exponential growth: Y(t), number of bacteria over time

r: growth rate of the population per unit of time

$$Y(t+dt) \simeq Y(t) + rY(t)dt$$

$$\frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t)$$

$$\lim_{dt\to 0} \frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t) \triangleq \frac{dY(t)}{dt} = rY(t)$$

solution:
$$Y(t) = Y_0 e^{rt}$$

How long to double the population? δ doubling time

Interlude! adapted from E. Gjini

Example of exponential growth: Y(t), number of bacteria over time

r: growth rate of the population per unit of time

$$Y(t+dt) \simeq Y(t) + rY(t)dt$$

$$\frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t)$$

$$\lim_{dt\to 0} \frac{Y(t+dt)-Y(t)}{dt} \simeq rY(t) \triangleq \frac{dY(t)}{dt} = rY(t)$$

solution:
$$Y(t) = Y_0 e^{rt}$$

How long to double the population? δ doubling time $2Y_0=Y_0e^{r\delta}\Rightarrow \delta=\frac{\ln(2)}{r}$

Example of a simple reaction network

adapted from B. Ingalls

Reaction rates follow mass action, production of S_1 allosteriscally inhibited with a strong cooperative binding of n molecules of S_2 ($s_i = [S_i]$):

$$\begin{vmatrix} v_1 & & & \\ v_2 & & & \\ \downarrow & & & \\ S_1 & & v_5 & \rightarrow S_2 \\ \downarrow & & & \\ v_3 & & & v_4 \\ \downarrow & & & \downarrow \end{vmatrix}$$

$$\begin{cases} v_1 & | v_2 \\ \downarrow & | v_3 \\ S_1 & | v_5 \\ \downarrow & | v_4 \\ | & v_4 \\ |$$

Example of a simple reaction network

adapted from B. Ingalls

Reaction rates follow mass action, production of S_1 allosteriscally inhibited with a strong cooperative binding of n molecules of S_2 ($s_i = [S_i]$):

$$\begin{vmatrix} v_1 & & & \\ v_2 & & & \\ \downarrow & & & \\ S_1 & & v_5 \rightarrow S_2 \\ \downarrow & & & \\ v_3 & & & v_4 \\ \downarrow & & & \downarrow \end{vmatrix}$$

Example of a simple reaction network

adapted from B. Ingalls

Reaction rates follow mass action, production of S_1 allosteriscally inhibited with a strong cooperative binding of n molecules of S_2 ($s_i = [S_i]$):

Concentrations plotted against time

Concentration s_1 plotted against s_2 9/24

Example of a simple reaction network

adapted from B. Ingalls

$$({\rm conc.time}^{-1})\,k_1=20, k_2=5, ({\rm conc.})\,K=1, ({\rm time}^{-1})\,k_3=k_4=5, k_5=2, {\rm and} n=4, {\rm arbitrary\, units}$$

Concentrations plotted against time

Concentration s_1 plotted against s_2 Phase portrait

Example of a simple reaction network

$$\left\{ \begin{array}{l} \frac{ds_1(t)}{dt} = f(s_1(t),s_2(t))\\ \frac{ds_2(t)}{dt} = g(s_1(t),s_2(t)) \end{array} \right.$$

The motion in the phase plane at (s_1,s_2) is given by $(f(s_1,s_2),g(s_1,s_2))$

Phase portrait

Direction field

Example of a simple reaction network

adapted from B. Ingalls

The s_1 -nullcline (or zero-growth isocline) is the curve $\frac{ds_1}{dt}=0$

The steady state (or fixed point) of the system is located where all of the nullclines intersect: $\frac{ds_1(t)}{dt} = \frac{ds_2(t)}{dt} = 0$

It is stable, because if we move a bit away, the system will return to it.

Another case of a reaction network

adapted from B. Ingalls

$$\begin{cases} \frac{ds_1(t)}{dt} = \frac{k_1}{1 + (s_2(t)/K_2)^{n_1}} - k_3 s_1(t) \\ \frac{ds_2(t)}{dt} = \frac{k_2}{1 + (s_1(t)/K_1)^{n_2}} - k_4 s_2(t) \end{cases}$$

Another case of a reaction network

adapted from B. Ingalls

$$\begin{cases} \frac{ds_1(t)}{dt} = \frac{k_1}{1 + (s_2(t)/K_2)^{n_1}} - k_3 s_1(t) \\ \frac{ds_2(t)}{dt} = \frac{k_2}{1 + (s_1(t)/K_1)^{n_2}} - k_4 s_2(t) \end{cases}$$

with **balanced** inhibition strength, $k_1 = k_2 = 20, K_1 = K_2 = 1, k_3 = k_4 = 5, n_1 = n_2 = 4.$

Another case of a reaction network

adapted from B. Ingalls

$$\begin{cases} \frac{ds_1(t)}{dt} = \frac{k_1}{1 + (s_2(t)/K_2)^{n_1}} - k_3 s_1(t) \\ \frac{ds_2(t)}{dt} = \frac{k_2}{1 + (s_1(t)/K_1)^{n_2}} - k_4 s_2(t) \end{cases}$$

with **unbalanced** inhibition strength, $k_1 = k_2 = 20$, $K_1 = K_2 = 1$, $k_3 = k_4 = 5$, $n_1 = 4$, $n_2 = 1$.

Exercice from B. Ingalls

Consider the following system:

$$\frac{\frac{dx(t)}{dt} = -y(t)}{\frac{dy(t)}{dt} = x(t)$$

What are the nullclines? The steady state?

Sketch the direction field by drawing the direction vectors in the x-y phase plane for $(1,0),\,(1,1),\,(0,1),\,(-1,1)\,(-1,0),\,(-1,-1),\,(0,-1),\,(1,-1).$

Exercice from B. Ingalls

Consider the following system:

$$\frac{dx(t)}{dt} = -y(t)$$

$$\frac{dy(t)}{dt} = x(t)$$

What are the nullclines? The steady state?

Sketch the direction field by drawing the direction vectors in the x-y phase plane for (1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1).

Example: ODE model of a genetic regulatory system w/ end-product inhibition

 $\begin{cases} \frac{dx_1}{dt} = \kappa_1 r(x_3) - \gamma_1 x_1 \\ \frac{dx_2}{dt} = \kappa_2 x_1 - \gamma_2 x_2 \\ \frac{dx_3}{dt} = \kappa_3 x_2 - \gamma_3 x_3 \end{cases}$

 x_1 : concentration of mRNA a x_2 : concentration of protein A x_3 : concentration of metabolite K κ_i : production constants

 κ_i : production constants γ_i : degradation contants

r: a decreasing non-linear regulatory function ranging from 0 to 1

15/24

from H. de Jona

Genetic regulatory networks

Non linear regulatory functions

$$h^+(x,\theta,m) = \frac{x^m}{x^m + \theta^m}$$

$$x < \theta, s^{+}(x, \theta) = 0$$

$$x > \theta, s^{+}(x, \theta) = 1$$

Genetic regulatory networks

Non linear regulatory functions

$$h^+(x,\theta,m) = \frac{x^m}{x^m + \theta^m}$$

$$x < \theta, s^{+}(x, \theta) = 0$$

$$x > \theta, s^{+}(x, \theta) = 1$$

Gardner et al. 2000

Genetic regulatory networks: the toogle switch

Toggle switch design: Repressor 1 inhibits transcription from Promoter 1 and is induced by Inducer 1. Repressor inhibits transcription from Promoter 2 and is induced by Inducer 2.

$$\frac{du}{dt} = \frac{\alpha_1}{1 + v^{\beta}} - u$$

$$\frac{dv}{dt} = \frac{\alpha_2}{1+u^{\gamma}} - v$$

- u concentration of rep.1
- v concentration of rep.2
- α₁ rate of synthesis of rep. 1
- lacktriangledown α_2 rate of synthesis of rep. 2
- ullet β cooperativity of repression of prom. 2
- γ cooperativity of repression of prom. 1

Genetic regulatory networks: the toogle switch

Figure 2 Geometric structure of the toggle equations. **a**, A bistable toggle network with balanced promoter strengths. **b**, A monostable toggle network with imbalanced promoter strengths. **c**, The bistable region. The lines mark the transition (bifurcation) between bistability and monostability. The slopes of the bifurcation lines are determined by the exponents β and γ for large α , and α ₂. **d**. Reducing the cooperativity of repression (β and γ) reduces the size of the bistable region. Bifurcation lines are illustrated for three different values of β and γ . The bistable region lies inside of each pair of curves.

Toggle switch design: Repressor 1 inhibits transcription from Promoter 1 and is induced by Inducer 1. Repressor inhibits transcription from Promoter 2 and is induced by Inducer 2.

$$\frac{du}{dt} = \frac{\alpha_1}{1+v^{\beta}} - u$$

$$\frac{dv}{dt} = \frac{\alpha_2}{1+u^{\gamma}} - v$$

- u concentration of rep.1
- v concentration of rep.2
- α_1 rate of synthesis of rep. 1
- α_2 rate of synthesis of rep. 2
- β cooperativity of repression of prom. 2
- \bullet γ cooperativity of repression of prom. 1

Exercice: ODE model of a genetic cross-inhibition

adapted from H. de Jong

Can you devise the remaining model equations?

$$\begin{cases} \frac{dx_{ra}}{dt} = \kappa_{ra}h_2^-(x_{pb}, \theta_{pb})h_2^-(x_{pa}, \theta_{pa}) - \gamma_{ra}x_{ra} \\ \frac{dx_{pa}}{dt} = \\ \frac{dx_{rb}}{dt} = \\ \frac{dx_{pb}}{dt} = \\ h_2^-(x, \theta) = \frac{\theta^2}{x^2 + \theta^2} \end{cases}$$

Exercice: ODE model of a genetic cross-inhibition

adapted from H. de Jong

Can you devise the remaining model equations?

$$\begin{cases} \frac{dx_{ra}}{dt} = \kappa_{ra}h_2^-(x_{pb}, \theta_{pb})h_2^-(x_{pa}, \theta_{pa}) - \gamma_{ra}x_{ra} \\ \frac{dx_{pa}}{dt} = \\ \frac{dx_{rb}}{dt} = \\ \frac{dx_{pb}}{dt} = \\ h_2^-(x, \theta) = \frac{\theta^2}{x^2 + \theta^2} \end{cases}$$

Exercice: ODE model of a genetic cross-inhibition

adapted from H. de Jong

$$\begin{cases} \frac{dx_{ra}}{dt} = \kappa_{ra}h_{2}^{-}(x_{pb}, \theta_{pb})h_{2}^{-}(x_{pa}, \theta_{pa}) - \gamma_{ra}x_{ra} \\ \frac{dx_{pa}}{dt} = \kappa_{pa}x_{ra} - \gamma_{pa}x_{pa} \\ \frac{dx_{rb}}{dt} = \kappa_{rb}h_{2}^{-}(x_{pa}, \theta_{pa})h_{2}^{-}(x_{pb}, \theta_{pb}) - \gamma_{rb}x_{rb} \\ \frac{dx_{pb}}{dt} = \kappa_{pb}x_{rb} - \gamma_{pb}x_{pb} \end{cases}$$

$$h_{2}^{-}(x, \theta) = \frac{\theta^{2}}{x^{2} + \theta^{2}}$$

- ODEs are valid for homogeneous systems and large numbers of molecules
- Stochasticity arises due to the small number of molecules
- Consider discrete amounts of molecules, homogeneous system, no spatial restrictions

 β_j : transition probability that reaction j brings the system to state X, α_j : transition probability to leave state X with the occurrence of reaction j

the master equation gives the evolution of X

$$\frac{\delta}{\delta t}p(X,t) = \sum_{j=1}^{m} (\beta_j - \alpha_j p(X,t)).$$

hard to solve ---- stochastic simulation algorithm (Gillespie 77)

Kierzek et al. 2001 proposed 10 elementary reactions for the transcription and translation of a procaryotic gene

Oscillatory behaviours

from B. Ingalls

Oscillatory behaviours

from B. Ingalls

A note on bifurcation analysis

from B. Ingalls

- Variation in parameter values can cause qualitative changes in long-term system behaviour (e.g. location and/or number of steady states)
- Parameter values at which such changes occur are called bifurcation points

A note on bifurcation analysis

from B. Ingalls

- Variation in parameter values can cause qualitative changes in long-term system behaviour (e.g. location and/or number of steady states)
- Parameter values at which such changes occur are called bifurcation points

Exercice:

$$\frac{dx(t)}{dt} = (a-1)x(t)$$

What is the sign of the rate of change dx/dt for positive and negative values of x? Under which condition the steady state at x=0 is stable?

A note on bifurcation analysis

from B. Ingalls

- Variation in parameter values can cause qualitative changes in long-term system behaviour (e.g. location and/or number of steady states)
- Parameter values at which such changes occur are called bifurcation points

Exercice:

$$\frac{dx(t)}{dt} = (a-1)x(t)$$

What is the sign of the rate of change dx/dt for positive and negative values of x? Under which condition the steady state at x=0 is stable? the steady state is stable if a<1, unstable if a>1. The parameter value a=1 is thus a bifurcation point for this system.

Bibliography

- H. de Jong (2002) Modeling and simulation of genetic regulatory systems: A literature review Journal of Computational Biology, 9(1):67-103 https://hal.inria.fr/inria-00072606/document
- B. Ingalls (2013) Mathematical Modelling in Systems Biology: An Introduction. MIT Press http://www.math.uwaterloo.ca/~bingalls/MMSB/
- Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339-342
 - https://www.researchgate.net/publication/12654725_Construction_of_a_Genetic_Toggle_Switch_in_Escherichia_coli