# Modelling of multi-cellular regulatory networks

**Claudine Chaouiya** 

claudine.chaouiya@univ-amu.fr

L3 SV Bioinformatique: Réseaux et régulation COURSE 5

March 2019

# Contents



### Motivation

6 Further reading

## $\text{cells} \rightarrow \text{tissues} \rightarrow \text{organs} \rightarrow \text{organism}$



Patterns in nature... driven by cell-cell communication





















Patterns in nature... driven by cell-cell communication The case of salt-and-pepper pattern (red cells and green cells)

Cells engineered with a synthetic gene circuit versus Simulation



Matsuda M, et al. Nature Communications 6. 6195 (2015)

#### The case of neurons



biology.stackexchange.com/

## The case of immune cells

#### **Cell mediated Immune Response**



# Contents



#### Motivation

 Cellular automata Brief introduction A bit of history... John Conway's game of life Formal definition Wolfram's cellular automata



Composition of logical regulatory graphs Introduction Grid configuration & sets of neighbours Stable state analysis: challenges illustrated Lateral inhibition & updating schemes Game of life (Conway CA) & updating schem

## Illustration

D. Melanogaster eggshell patterning Cellular model Multi-cellular model

5 GINsim & EpiLog: from cellular to multi-cellular logical models

Further reading

# Introduction to cellular automata

Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of such complexity can be investigated through mathematical models termed 'cellular automata'.

Cellular automata [...] are analysed both as discrete dynamical systems, and as information-processing systems.

S. Wolfram Nature 311, 1984



Use of Cellular Automata (CA) to model a wide range of physical & biological processes

Ideal to study / understand that "the whole is more than the parts"

 $\rightarrow$  emergent properties

John von Neumann Stanislaw Ulam





How to construct "self-replicating machines"  $\rightarrow$  Define rules and states to prove universal constructibility

Cellular automata were born...

John Conway, 1937-



Aimed to identify properties of cellular automata, depending on their rules

- Ever growing patterns
- Stable patterns
- Oscillatory patterns
- Patterns that translate themselves across the grid
- Garden of Eden
- Etc.

# Complexity arises from simple rules

Each cell lives in a square in a rectangular grid, it is either dead or alive. The game starts from an initial distribution of cells alive in a 2D grid and, at each time step, a cell fate depends on the state of its 8 closest neighbours (the grid utilises wrapping  $\rightarrow$  a cell on the far left is a neighbour of a cell on the far right, the same principle applies at the top and bottom):

- 1 If a cell is alive, and 2 or 3 of it's neighbours are also alive, the cell remains alive.
- 2 If a cell is alive and it has more than 3 alive neighbours, it dies of overcrowding.
- 3 If a cell is alive and it has fewer than 2 alive neighbours, it dies of loneliness.
- 4 If a cell is dead and it has exactly 3 neighbours it becomes alive again.

#### Cellular automata John Conway's game of life

| 00                              | 01  | 02    | 2 0    | 3 0 | 4   | ( | 00   | 0   | 1     | 02    | 03     | (   | 04 |     |       | 1    | 2    | 3     | 2    | 1    |
|---------------------------------|-----|-------|--------|-----|-----|---|------|-----|-------|-------|--------|-----|----|-----|-------|------|------|-------|------|------|
| 10                              | 11  | 12    | 2 13   | 3 1 | 4   |   | 10   | 1   | 1     | 12    | 13     | 1   | 14 |     |       | 1    | 1    | 2     | 1    | 1    |
| 20                              | 21  | 22    | 2 23   | 3 2 | 4   | 1 | 20   | 2   | 1     | 22    | 23     | 2   | 24 |     | Γ     | 1    | 2    | 3     | 2    | 1    |
| Moore neighbouring Generation 0 |     |       |        |     |     |   |      |     |       |       |        | _   | (  | Gen | erati | on 0 |      |       |      |      |
|                                 |     |       |        |     |     |   | Livi | ing | cells | s are | e in g | ree | n  |     | #     | ŧ of | ivin | g ne  | ighb | ours |
| Γ                               | 0 2 | 2 1   | 2      | 0   |     |   | 1    | 1   | 2     | 3     | 2      | 1   | 1  |     | Γ     | 0    | 2    | 1     | 2    | 0    |
|                                 | 0 3 | 3 2   | 3      | 0   |     |   | 1    | 1   | 1     | 2     | 1      | 1   | 1  |     | Γ     | 0    | 3    | 2     | 3    | 0    |
|                                 | 0 2 | 2 1   | 2      | 0   |     |   | 1    | 1   | 2     | 3     | 2      | 1   | 1  |     |       | 0    | 2    | 1     | 2    | 0    |
| _                               | G   | enera | tion 1 |     |     |   | _    | G   | aene  | ratio | on 2   |     |    |     |       | (    | Gen  | erati | on 3 |      |
|                                 |     |       |        |     |     |   |      |     |       | Wi    | th w   | /ra | pp | ing |       |      |      |       |      |      |
| 00                              | 01  | 02    | 03     | 04  | ] [ | 1 | 2    | 3   | 2     | 1     | 1      | [   | 0  | 2   | 2     | 2    | 0    | 1     |      |      |
| 10                              | 11  | 12    | 12     | 1/  | 1 - | 1 | 4    | 0   | 4     | 1     | 1      | 1   | 0  | 2   | 0     | 2    | 0    | 1     |      |      |

# No wrapping

0 2 Can you continue??

0

Generation 2

# Moore neighbouring Rules of the game of life

20

A dead cell surounded by 3 living cells becomes alive again •

2 3 2

Generation 0

- A living cell surounded by 2 or 3 living cell remains alive
- In all other cases, the cell dies or remains dead •

24

https://academo.org/demos/conways-game-of-life/

No apparent correspondence between the size of the initial pattern and the time needed to stabilize Adding or removing one cell in the initial pattern may completely change the behaviour

#### Fundamental properties:

- 1 Parallelism: constituants evolve simultaneously and independently
- 2 Locality: next state of a cell only depends on its current state and states of its neighbours
- 8 Homogeneity: rules are universal, *i.e.* are the same for all the cells

# Cellular automata

John Conway's game of life



https://en.wikipedia.org/wiki/Conway's\_Game\_of\_Life

#### Formal definition

A cellular automata is defined by a tuple (L, S, N, f) where

- 1 L is a regular network (nodes are cells, all with the same degree)
- $\mathbf{2} S$  is a finite set of states
- $\mathbf{3} \ N$  is a finite set of neighbouring indices of size n
- 4 *f* is a transition function:  $f: S^n \to S$

A configuration is a function associating a state to each cell:  $C_i : L \to S^{|L|}$ 

The transition function defines the evolution of the configurations:

$$\forall c \in L, C_{i+1}(c) = f(\{C_i(\delta_i), \delta_i \in N(c)\})$$

where N(c) is the set of neighbours of cell c

#### Simpler case of a line of cells

*f* transition function:  $s_{t+1}(c) = f(s_t(\delta_1), \dots, s_t(\delta_n)), \delta_i$  are the *n* neighbours of *c* There are  $p^{(p^n)}$  such functions (with *p* the number of states) S. Wolfram was the first to conduct a systematic study of CA

1D,  $n = 3, p = 2 \rightarrow 2^{(2^3)} = 256$  different CA 2D,  $n = 9, p = 2 \rightarrow 2^{(2^9)} = 2^{512} \sim 10^{154}$  different CA



Elementary rules of Wolfram CA

- The next colour of a cell depends on its colour and that of its immediate neighbours
- Rule outcomes are encoded in a binary representation e.g.  $2 + 2^3 + 2^4 + 2^6 = 90$

## Wolfram's cellular automata Rule 60

rule 60



#### Exercice: give the next 2 states for this initial configuration



http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

# Wolfram's cellular automata

#### Rule 90, the Sierpinski Triangle

Each cell's next value (0/1) is the exclusive or of the values of its two neighbours

20 iterations, starting from a unique black cell



100 iterations, starting from a unique black cell





# Wolfram's cellular automata







http://mathworld.wolfram.com/ElementaryCellularAutomaton.html/42

# Contents



3 Composition of logical regulatory graphs Introduction Grid configuration & sets of neighbours Stable state analysis: challenges illustrated Lateral inhibition & updating schemes Game of life (Conway CA) & updating schemes

6 Further reading

| Truth table: |                       |                |                |  |  |  |  |
|--------------|-----------------------|----------------|----------------|--|--|--|--|
| x            | <b>x</b> <sub>1</sub> | $\mathbf{x}_2$ | $\mathbf{x}_3$ |  |  |  |  |
| 0000         | 0                     | 0              | 0              |  |  |  |  |
| 0001         | 1                     | 0              | 0              |  |  |  |  |
| 0010         | 0                     | 0              | 1              |  |  |  |  |
| 0011         | 1                     | 0              | 1              |  |  |  |  |
| 0100         | 0                     | 1              | 1              |  |  |  |  |
| 0101         | 1                     | 1              | 1              |  |  |  |  |
| 0110         | 0                     | 1              | 1              |  |  |  |  |
| 0111         | 1                     | 1              | 1              |  |  |  |  |
| 1000         | 0                     | 0              | 0              |  |  |  |  |
| 1001         | 0                     | 0              | 0              |  |  |  |  |
| 1010         | 0                     | 0              | 1              |  |  |  |  |
| 1011         | 0                     | 0              | 1              |  |  |  |  |
| 1100         | 0                     | 1              | 1              |  |  |  |  |
| 1101         | 0                     | 1              | 1              |  |  |  |  |
| 1110         | 0                     | 1              | 1              |  |  |  |  |
| 1111         | 0                     | 1              | 1              |  |  |  |  |

#### Cellular regulatory graph



#### Logical functions:

$$\begin{array}{rcl} f_0(x) = & x_0 \\ f_1(x) = & !x_0 \& x_3 \\ f_2(x) = & x_1 \\ f_3(x) = & x_1 | x_2 \end{array}$$

#### Composed regulatory graph



Cells 1 & 4  $\rightarrow$  2 neighbours Cells 2 & 3  $\rightarrow$  3 neighbours

#### Integration function $h_0$

Logical rule defining the value of the input  $u_0$  in a cell, depending on the signals emitted by components of neighbouring cells

# OR

at-least-1 neighbour with  $x_1=1$   $h_0^1(x)=x_1^2\,|\,x_1^3$ 

#### 6 stable states

| $x_1^1$ | $x_2^1$ | $x_3^1$               | $x_1^2$ | $x_{2}^{2}$ | $x_3^2$ | $x_1^3$ | $x_{2}^{3}$ | $x_3^3$ | $x_1^4$ | $x_2^4$ | $x_3^4$ |
|---------|---------|-----------------------|---------|-------------|---------|---------|-------------|---------|---------|---------|---------|
| 0       | 0       | 0                     | 0       | 0           | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| 1       | 1       | 1                     | 0       | 0           | 0       | 0       | 0           | 0       | 0       | 0       | 0       |
| 0       | 0       | 0                     | 1       | 1           | 1       | 0       | 0           | 0       | 0       | 0       | 0       |
| 0       | 0       | 0                     | 0       | 0           | 0       | 1       | 1           | 1       | 0       | 0       | 0       |
| 0       | 0       | 0                     | 0       | 0           | 0       | 0       | 0           | 0       | 1       | 1       | 1       |
| 1       | 1       | 0<br>1<br>0<br>0<br>1 | 0       | 0           | 0       | 0       | 0           | 0       | 1       | 1       | 1       |

#### Composition of logical regulatory graphs Introduction

#### Composed regulatory graph



Cells 1 & 4  $\rightarrow$  2 neighbours Cells 2 & 3  $\rightarrow$  3 neighbours

#### Integration function $h_0$

Logical rule defining the value of the input  $u_0$  in a cell, depending on the signals emitted by components of neighbouring cells

### AND

*at-least-v* neighbours with  $x_1 = 1$  $h_0^1(x) = x_1^2 \& x_1^3$ 

#### 13 stable states

| $x_1^1$ | $x_2^1$ | $x_3^1$ | $x_{1}^{2}$ | $x_2^2$ | $x_3^2$ | $x_{1}^{3}$ | $x_2^3$ | $x_3^3$ | $x_1^4$ | $x_2^4$ | $x_3^4$ |
|---------|---------|---------|-------------|---------|---------|-------------|---------|---------|---------|---------|---------|
| 0       | 0       | 0       | 0           | 0       | 0       | 0           | 0       | 0       | 0       | 0       | 0       |
| 1       | 1       | 1       | 0           | 0       | 0       | 0           | 0       | 0       | 0       | 0       | 0       |
| 1       | 1       | 1       | 1           | 1       | 1       | 0           | 0       | 0       | 0       | 0       | 0       |
| 1       | 1       | 1       | 0           | 0       | 0       | 1           | 1       | 1       | 0       | 0       | 0       |
| 1       | 1       | 1       | 0           | 0       | 0       | 0           | 0       | 0       | 1       | 1       | 1       |
| 1       | 1       | 1       | 1           | 1       | 1       | 0           | 0       | 0       | 1       | 1       | 1       |
| 1       | 1       | 1       | 0           | 0       | 0       | 1           | 1       | 1       | 1       | 1       | 1       |
| 0       | 0       | 0       | 1           | 1       | 1       | 0           | 0       | 0       | 0       | 0       | 0       |
| 0       | 0       | 0       | 1           | 1       | 1       | 1           | 1       | 1       | 0       | 0       | 0       |
| 0       | 0       | 0       | 1           | 1       | 1       | 0           | 0       | 0       | 1       | 1       | 1       |
| 0       | 0       | 0       | 0           | 0       | 0       | 1           | 1       | 1       | 0       | 0       | 0       |
| 0       | 0       | 0       | 0           | 0       | 0       | 1           | 1       | 1       | 1       | 1       | 1       |
| 0       | 0       | 0       | 0           | 0       | 0       | 0           | 0       | 0       | 1       | 1       | 1       |

Properties of interest & challenges

- What are the stable states / attractors?
- Given an initial state, what are the reachable attractors?
- What are the effects of perturbations (all cells, / clones)
- What are the effects of modifications in cell-cell communication *i.e.* 
  - topology (number & shape of the cells, border conditions, etc.)
  - neighbouring relation and/or integration rule,

#### Challenges

- Model definition: integration functions often unknown
- Model simulation: updating schemes at the cellular versus grid levels?
- Worsen combinatorial explosion of the number of states (configurations)

Grid configuration & sets of neighbours





Torus (vertical & horizontal wrapping)





Stable state analysis: challenges illustrated

Composition of n cellular models with  $p \text{ components} \rightarrow 2^{np} \text{ states}$ 

Rather than identifying the stable states of the composed model, compose the stable states  $\rightarrow$  compatibility condition



| Truth table: |                       |                  |                |  |  |  |  |  |
|--------------|-----------------------|------------------|----------------|--|--|--|--|--|
| x            | <b>x</b> <sub>1</sub> | $\mathbf{x}_{2}$ | $\mathbf{x}_3$ |  |  |  |  |  |
| 0000         | 0                     | 0                | 0              |  |  |  |  |  |
| 0001         | 1                     | 0                | 0              |  |  |  |  |  |
| 0010         | 0                     | 0                | 1              |  |  |  |  |  |
| 0011         | 1                     | 0                | 1              |  |  |  |  |  |
| 0100         | 0                     | 1                | 1              |  |  |  |  |  |
| 0101         | 1                     | 1                | 1              |  |  |  |  |  |
| 0110         | 0                     | 1                | 1              |  |  |  |  |  |
| 0111         | 1                     | 1                | 1              |  |  |  |  |  |
| 1000         | 0                     | 0                | 0              |  |  |  |  |  |
| 1001         | 0                     | 0                | 0              |  |  |  |  |  |
| 1010         | 0                     | 0                | 1              |  |  |  |  |  |
| 1011         | 0                     | 0                | 1              |  |  |  |  |  |
| 1100         | 0                     | 1                | 1              |  |  |  |  |  |
| 1101         | 0                     | 1                | 1              |  |  |  |  |  |
| 1110         | 0                     | 1                | 1              |  |  |  |  |  |
| 1111         | 0                     | 1                | 1              |  |  |  |  |  |

Logical functions:

| ſ      | $f_1(x) =$ | $!x_0\&x_3$ |
|--------|------------|-------------|
| }<br>} | $f_2(x) =$ | $x_1$       |
| l      | $f_3(x) =$ | $x_1   x_2$ |

Integration function:

$$h_0^i(x) = x_1^{k_1} \mid x_1^{k_2} \mid \dots, x_1^{k_6}$$

at-least one neighbour with  $g_1$  active

- (000) compatible with both input values
- (111) is compatible with the input value 0
- if at-least-1 neighbour is in (111) then the cell is in (000)
- if all neighbours are in (000) then the cell is in (000) or (111)

P. Varela et al (2018) ENTCS

Stable state analysis: challenges illustrated



 $\rightarrow$  too many to be listed explicitly!

Lateral inhibition & updating schemes



Synchronous update may lead to spurious cyclical behaviours  $\rightarrow$  need to break the synchrony...

Lateral inhibition & updating schemes

N. Fatès, Asynchronous Cellular Automata, Encyclopedia of Complexity and Systems Science, Springer 2018.

 $\alpha$ 

Steps

Transient grid

Steps

Final grid



synchronise the transitions of the elements that compose a system

 $\alpha$ -asynchronous updating scheme

At each iteration, each cell is updated with a probability  $\alpha$ , and is left in the same state with probability  $1 - \alpha$ .

 $\alpha$  is called the synchrony rate

How to define asynchronous updates and to assess the impact on the dynamics is challenging ...

Game of life (Conway CA) & updating schemes

Configurations obtained with the  $\alpha$ -asynchronous game of life

- $\alpha = 1$ , synchronous updating  $\rightarrow$  the system is stable at t = 50
- $\alpha = 0.98$  small asynchrony  $\rightarrow$  the system is still evolving at t = 100
- ${\ensuremath{\, \Theta }}\ \alpha = 0.5 \rightarrow$  the qualitative behaviour of the system has changed



N. Fatès, Asynchronous Cellular Automata, Encyclopedia of Complexity and Systems Science, Springer 2018.

# Contents

# 4 Illustration

D. Melanogaster eggshell patterning Cellular model Multi-cellular model

5 GINsim & EpiLog: from cellular to multi-cellular logical models

6 Further reading







#### Logical model of the cellular network



### Illustration D. Melanogaster eggshell patterning, cellular model

A. Fauré et al. (2014) Plos Comp. Bio 10(3):e1003527

|    | dpERK | Mirr | Pnt | Rho | Aos | Br |
|----|-------|------|-----|-----|-----|----|
| F1 | 0     | 0    | 0   | 0   | 0   | 0  |
| F2 | 0     | 0    | 0   | 0   | 0   | 1  |
| F3 | 1     | 0    | 0   | 0   | 0   | 0  |
| F4 | 1     | 0    | 0   | 0   | 0   | 1  |
| F5 | 1     | 1    | 0   | 0   | 0   | 1  |
| F6 | 1     | 1    | 0   | 1   | 0   | 0  |
| F7 | 2     | 0    | 1   | 0   | 0   | 0  |
| F8 | 2     | 1    | 1   | 2   | 1   | 0  |

#### Stable states



Regions & final patterns before & after Grk extinction



Reachability analysis With a delay in Pnt activity, F8 is not reachable

#### Cellular model



#### $\label{eq:multi-cellular model} \mbox{Follicular epithelium} \rightarrow \mbox{grid of hexagonal cells}$



35/42

#### Multi-cellular model in silico assessment of mutant conditions (input conditions)



Images reproduced with permission from Shravage et al. (2007) Development 134(12):2261-71

#### Multi-cellular model in silico assessment of mutant conditions (internal components)



**Multi-cellular model** *in silico* assessment of mutant conditions (internal components, clonal analysis)



# Contents



6 GINsim & EpiLog: from cellular to multi-cellular logical models

6 Further reading

# GINsim & EpiLog: from cellular to multi-cellular logical models

P. Varela et al. (2018) F1000Research, 7:1145



- Define and analyse the cellular model with GINsim
- Integrate this model in an epithelium (i.e. an hexagonal grid of cells) with EpiLog
- Integration inputs  $\rightarrow$  signals from neighbouring cells, Positional inputs  $\rightarrow$  other environmental cues (constant)
- Simulate wild-type and perturbations

# Contents



GINsim & EpiLog: from cellular to multi-cellular logical models

#### 6 Further reading

- P. Varela et al. (2018) EpiLog: A software for the logical modelling of epithelial dynamics. F1000Research, 7:1145
  https://doi.org/10.12688/f1000research.15613.1
- A. Fauré *et al* (2014) A Discrete Model of *Drosophila* Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects. *PLoS Computational Biology*, 10(3): e1003527. http://dx.doi.org/10.1371/journal.pcbi.1003527
- Nicolas Bredèche (2019) Automates Cellulaires 1D et 2D, support de cours http://pages.isir.upmc.fr/~bredeche/Teaching/2i013/2018-2019/cours\_2i013\_2019\_CA1DCA2D.pdf
- Jean-Philippe Rennard (2000) Introduction aux Automates Cellulaires, support de cours
  http://www.rennard.org/alife/french/ac.pdf
- Nazim Fatès (2017) Asynchronous cellular automata https://hal.inria.fr/hal-01653675