Modelling of multi-cellular regulatory networks

Claudine Chaouiya
claudine.chaouiya@univ-amu.fr
L3 SV Bioinformatique: Réseaux et régulation COURSE 5

March 2019

Contents

(1) Motivation

(2) Cellular automata

Brief introduction
A bit of history...
John Conway's game of life
Formal definition
Wolfram's cellular automata
(3) Composition of logical regulatory graphs

Introduction
Grid configuration \& sets of neighbours
Stable state analysis: challenges illustrated
Lateral inhibition \& updating schemes
Game of life (Conway CA) \& updating schemes
(4) Illustration
D. Melanogaster eggshell patterning

Cellular model
Multi-cellular model
(5) GINsim \& EpiLog: from cellular to multi-cellular logical models
(6) Further reading

Motivation

From cellular networks to physiology
cells \rightarrow tissues \rightarrow organs \rightarrow organism

Motivation

From cellular networks to physiology
Patterns in nature... driven by cell-cell communication

Motivation

From cellular networks to physiology
Patterns in nature... driven by cell-cell communication The case of salt-and-pepper pattern (red cells and green cells)

Cells engineered with a synthetic gene circuit versus Simulation

Motivation
From cellular networks to physiology
The case of neurons

Motivation

From cellular networks to physiology
The case of immune cells

Cell mediated Immune Response

Contents

(1) Motivation
(2) Cellular automata

Brief introduction
A bit of history... John Conway's game of life Formal definition
Wolfram's cellular automata
(3) Composition of logical regulatory graphs

Introduction
Grid configuration \& sets of neighbours
Stable state analysis: challenges illustrated
Lateral inhibition \& updating schemes
Game of life (Conway CA) \& updating schemes
4. Illustration
D. Melanogaster eggshell patterning

Cellular model
Multi-cellular model
(5) GINsim \& EpiLog: from cellular to multi-cellular logical models
(6) Further reading

Introduction to cellular automata

Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of such complexity can be investigated through mathematical models termed 'cellular automata'.

Cellular automata [...] are analysed both as discrete dynamical systems, and as information-processing systems.

Use of Cellular Automata (CA) to model a wide range of physical \& biological processes

Ideal to study / understand that "the whole is more than the parts"

$$
\rightarrow \text { emergent properties }
$$

Cellular automata

A bit of history...

John von Neumann Stanislaw Ulam

How to construct "self-replicating machines" \rightarrow Define rules and states to prove universal constructibility

Cellular automata were born...

John Conway, 1937-

Aimed to identify properties of cellular automata, depending on their rules

- Ever growing patterns
- Stable patterns
- Oscillatory patterns
- Patterns that translate themselves across the grid
- Garden of Eden
- Etc.

Cellular automata

Complexity arises from simple rules

Each cell lives in a square in a rectangular grid, it is either dead or alive. The game starts from an initial distribution of cells alive in a 2D grid and, at each time step, a cell fate depends on the state of its 8 closest neighbours (the grid utilises wrapping \rightarrow a cell on the far left is a neighbour of a cell on the far right, the same principle applies at the top and bottom):

1 If a cell is alive, and 2 or 3 of it's neighbours are also alive, the cell remains alive.
2 If a cell is alive and it has more than 3 alive neighbours, it dies of overcrowding.
3 If a cell is alive and it has fewer than 2 alive neighbours, it dies of loneliness.
4 If a cell is dead and it has exactly 3 neighbours it becomes alive again.

Cellular automata

No wrapping

00	01	02	03	04
10	11	12	13	14
20	21	22	23	24

Moore neighbouring

0	2	1	2	0
0	3	2	3	0
0	2	1	2	0
Generation 1				

Generation 1

00	01	02	03	04
10	11	12	13	14
20	21	22	23	24

Generation 0
Living cells are in green

1	2	3	2	1
1	1	2	1	1
1	2	3	2	1
Generation 2				

1	2	3	2	1
1	1	2	1	1
1	2	3	2	1
Generation 0				

\# of living neighbours

0	2	1	2	0
0	3	2	3	0
0	2	1	2	0
Generation 3				

With wrapping

00	01	02	03	04
10	11	12	13	14
20	21	22	23	24

Moore neighbouring

1	2	3	2	1
1	1	2	1	1
1	2	3	2	1
Generation 0				

0	2	2	2	0
0	3	2	3	0
0	2	2	2	0

Generation 2

Rules of the game of life

- A dead cell surounded by 3 living cells becomes alive again
- A living cell surounded by 2 or 3 living cell remains alive
- In all other cases, the cell dies or remains dead

Cellular automata

https://academo.org/demos/conways-game-of-life/

No apparent correspondence between the size of the initial pattern and the time needed to stabilize
Adding or removing one cell in the initial pattern may completely change the behaviour

Fundamental properties:
(1) Parallelism: constituants evolve simultaneously and independently
(2) Locality: next state of a cell only depends on its current state and states of its neighbours
(3) Homogeneity: rules are universal, i.e. are the same for all the cells

Cellular automata

John Conway's game of life

https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Cellular automata

Formal definition

A cellular automata is defined by a tuple (L, S, N, f) where
(1) L is a regular network (nodes are cells, all with the same degree)
(2) S is a finite set of states
(3) N is a finite set of neighbouring indices of size n
(4) f is a transition function: $f: S^{n} \rightarrow S$

A configuration is a function associating a state to each cell: $C_{i}: L \rightarrow S^{|L|}$
The transition function defines the evolution of the configurations:

$$
\forall c \in L, C_{i+1}(c)=f\left(\left\{C_{i}\left(\delta_{i}\right), \delta_{i} \in N(c)\right\}\right)
$$

where $N(c)$ is the set of neighbours of cell c

Wolfram's cellular automata

Simpler case of a line of cells
f transition function: $s_{t+1}(c)=f\left(s_{t}\left(\delta_{1}\right), \ldots s_{t}\left(\delta_{n}\right)\right), \delta_{i}$ are the n neighbours of c There are $p^{\left(p^{n}\right)}$ such functions (with p the number of states)
S. Wolfram was the first to conduct a systematic study of CA

1D, $n=3, p=2 \rightarrow 2^{\left(2^{3}\right)}=256$ different CA
2D, $n=9, p=2 \rightarrow 2^{\left(2^{9}\right)}=2^{512} \sim 10^{154}$ different CA

Elementary rules of Wolfram CA

- The next colour of a cell depends on its colour and that of its immediate neighbours
- Rule outcomes are encoded in a binary representation e.g. $2+2^{3}+2^{4}+2^{6}=90$

Wolfram's cellular automata

Rule 60

rule 60

Exercice: give the next 2 states for this initial configuration

Wolfram's cellular automata

Rule 90, the Sierpinski Triangle

Each cell's next value (0/1) is the exclusive or of the values of its two neighbours

20 iterations, starting from a unique black cell

100 iterations, starting from a unique black cell

starting from a random distribution of black cells

Wolfram's cellular automata

rule 90

rule 110

rule 150

rule 188

rule 222

rule 94

rule 122

rule 158

rule 190

rule 250

Contents

(1) Motivation
(2) Cellular automata

Brief introduction
A bit of history.
John Conway's game of life
Formal definition
Wolfram's cellular automata
(3) Composition of logical regulatory graphs Introduction
Grid configuration \& sets of neighbours Stable state analysis: challenges illustrated Lateral inhibition \& updating schemes Game of life (Conway CA) \& updating schemes
4. Illustration
D. Melanogaster eggshell patterning

Cellular model
Multi-cellular model
(5) GINsim \& EpiLog: from cellular to multi-cellular logical models
(6) Further reading

Composition of logical regulatory graphs

Cellular regulatory graph

Logical functions:

$$
\left\{\begin{array}{l}
f_{0}(x)=x_{0} \\
f_{1}(x)=!x_{0} \& x_{3} \\
f_{2}(x)=x_{1} \\
f_{3}(x)=x_{1} \mid x_{2}
\end{array}\right.
$$

Truth table:

x	x_{1}	x_{2}	x_{3}
0000	0	0	0
0001	1	0	0
0010	0	0	1
0011	1	0	1
0100	0	1	1
0101	1	1	1
0110	0	1	1
0111	1	1	1
1000	0	0	0
1001	0	0	0
1010	0	0	1
1011	0	0	1
1100	0	1	1
1101	0	1	1
1110	0	1	1
1111	0	1	1

Composition of logical regulatory graphs

Composed regulatory graph

Cells $1 \& 4 \rightarrow 2$ neighbours
Cells $2 \& 3 \rightarrow 3$ neighbours

Integration function h_{0}
Logical rule defining the value of the input u_{0} in a cell, depending on the signals emitted by components of neighbouring cells

OR

at-least-1 neighbour with $x_{1}=1$
$h_{0}^{1}(x)=x_{1}^{2} \mid x_{1}^{3}$

6 stable states

x_{1}^{1}	x_{2}^{1}	x_{3}^{1}	x_{1}^{2}	x_{2}^{2}	x_{3}^{2}	x_{1}^{3}	x_{2}^{3}	x_{3}^{3}	x_{1}^{4}	x_{2}^{4}	x_{3}^{4}
0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	1
1	1	1	0	0	0	0	0	0	1	1	1

Composition of logical regulatory graphs

Composed regulatory graph

Cells $1 \& 4 \rightarrow 2$ neighbours
Cells $2 \& 3 \rightarrow 3$ neighbours

Integration function h_{0}
Logical rule defining the value of the input u_{0} in a cell, depending on the signals emitted by components of neighbouring cells

AND

at-least-v neighbours with $x_{1}=1$
$h_{0}^{1}(x)=x_{1}^{2} \& x_{1}^{3}$

13 stable states

x_{1}^{1}	x_{2}^{1}	x_{3}^{1}	x_{1}^{2}	x_{2}^{2}	x_{3}^{2}	x_{1}^{3}	x_{2}^{3}	x_{3}^{3}	x_{1}^{4}	x_{2}^{4}	x_{3}^{4}
0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0	0
1	1	1	0	0	0	1	1	1	0	0	0
1	1	1	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	0	0	0	1	1	1
1	1	1	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0	1	1	1
0	0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	1	1	1

Composition of logical regulatory graphs

- What are the stable states / attractors?
- Given an initial state, what are the reachable attractors?
- What are the effects of perturbations (all cells, / clones)
- What are the effects of modifications in cell-cell communication i.e.
- topology (number \& shape of the cells, border conditions, etc.)
- neighbouring relation and/or integration rule,

Challenges

- Model definition: integration functions often unknown
- Model simulation: updating schemes at the cellular versus grid levels?
- Worsen combinatorial explosion of the number of states (configurations)

Composition of logical regulatory graphs

Grid configuration \& sets of neighbours

Composition of logical regulatory graphs

Stable state analysis: challenges illustrated

Composition of n cellular models with p components $\rightarrow 2^{n p}$ states
Rather than identifying the stable states of the composed model, compose the stable states \rightarrow compatibility condition

Truth table:

x	x_{1}	x_{2}	x_{3}
0000	0	0	0
0001	1	0	0
0010	0	0	1
0011	1	0	1
0100	0	1	1
0101	1	1	1
0110	0	1	1
0111	1	1	1
1000	0	0	0
1001	0	0	0
1010	0	0	1
1011	0	0	1
1100	0	1	1
1101	0	1	1
1110	0	1	1
1111	0	1	1

Logical functions:

$$
\begin{cases}f_{1}(x)= & !x_{0} \& x_{3} \\ f_{2}(x)= & x_{1} \\ f_{3}(x)= & x_{1} \mid x_{2}\end{cases}
$$

Integration function:

$$
h_{0}^{i}(x)=x_{1}^{k_{1}}\left|x_{1}^{k_{2}}\right| \ldots, x_{1}^{k_{6}}
$$

at-least one neighbour with g_{1} active

- (000) compatible with both input values
- (111) is compatible with the input value 0
- if at-least-1 neighbour is in (111) then the cell is in (000)
- if all neighbours are in (000) then the cell is in (000) or (111)

Composition of logical regulatory graphs

Stable state analysis: challenges illustrated

Hexagonal grid 4×4, distance 2

- if at-least \mathbf{q} neighbours in (111) then the cell is (000)
- if not at-least \mathbf{q} neighbours in (000) then the cell is (000) or (111)

\rightarrow too many to be listed explicitly!

Composition of logical regulatory graphs

Lateral inhibition \& updating schemes

Synchronous update may lead to spurious cyclical behaviours \rightarrow need to break the synchrony...

Composition of logical regulatory graphs

Lateral inhibition \& updating schemes
N. Fatès, Asynchronous Cellular Automata, Encyclopedia of Complexity and Systems Science, Springer 2018.
in Nature, there is no global clock to synchronise the transitions of the elements that compose a system

α	Steps	Transient grid	Steps	Final grid
0	400		900	
0.01	70		370	
0.5	4		12	
0.8	6		20	
0.99	11		132	

Composition of logical regulatory graphs

Game of life (Conway CA) \& updating schemes

Configurations obtained with the α-asynchronous game of life

- $\alpha=1$, synchronous updating \rightarrow the system is stable at $t=50$
- $\alpha=0.98$ small asynchrony \rightarrow the system is still evolving at $\mathrm{t}=100$
- $\alpha=0.5 \rightarrow$ the qualitative behaviour of the system has changed

$t=0$

$t=25$

$t=50$

$t=75$

$t=100$
N. Fatès, Asynchronous Cellular Automata, Encyclopedia of Complexity and Systems Science, Springer 2018.

Contents

(1) Motivation
(2) Cellular automata

Brief introduction
A bit of history...
John Conway's game of life
Formal definition
Wolfram's cellular automata
(3) Composition of logical regulatory graphs

Introduction
Grid configuration \& sets of neighbours
Stable state analysis: challenges illustrated
Lateral inhibition \& updating schemes
Game of life (Conway CA) \& updating schemes
(4) Illustration
D. Melanogaster eggshell patterning

Cellular model
Multi-cellular model
(5) GINsim \& EpiLog: from cellular to multi-cellular logical models

6 Further reading

Illustration

D. Melanogaster eggshell patterning

Gene expression patterns:

- Roof: Broad

Floor: Rhomboid
Follicle cells receive two types of signals: Grk \& Dpp

Illustration

D. Melanogaster eggshell patterning

Logical model of the cellular network

Illustration

D. Melanogaster eggshell patterning, cellular model

Cellular model

	dpERK	Mirr	Pnt	Rho	Aos	Br
F1	0	0	0	0	0	0
F2	0	0	0	0	0	1
F3	1	0	0	0	0	0
F4	1	0	0	0	0	1
F5	1	1	0	0	0	1
F6	1	1	0	1	0	0
F7	2	0	1	0	0	0
F8	2	1	1	2	1	0

Stable states

Before Grk extinction

After Grk extinction

Regions \& final patterns before \& after Grk extinction

[^0]
Illustration

D. Melanogaster eggshell patterning, multi-cellular model
A. Fauré et al. (2014) Plos Comp. Bio 10(3):e1003527

Multi-cellular model Follicular epithelium \rightarrow grid of hexagonal cells

Illustration

D. Melanogaster eggshell patterning, multi-cellular model
A. Fauré et al. (2014) Plos Comp. Bio 10(3):e1003527

Multi-cellular model in silico assessment of mutant conditions (input conditions)

Input conditions

Images reproduced with permission from Shravage et al. (2007) Development 134(12):2261-71

Illustration

D. Melanogaster eggshell patterning, multi-cellular model

> A. Fauré et al. (2014) Plos Comp. Bio 10(3):e1003527

Multi-cellular model in silico assessment of mutant conditions (internal components)

Illustration

D. Melanogaster eggshell patterning, multi-cellular model

A. Fauré et al. (2014) Plos Comp. Bio 10(3):e1003527

Multi-cellular model in silico assessment of mutant conditions (internal components, clonal analysis)

Contents

(1) Motivation
(2) Cellular automata

Brief introduction
A bit of history...
John Conway's game of life
Formal definition
Wolfram's cellular automata
(3) Composition of logical regulatory graphs

Introduction
Grid configuration \& sets of neighbours
Stable state analysis: challenges illustrated
Lateral inhibition \& updating schemes
Game of life (Conway CA) \& updating schemes
(4) Illustration
D. Melanogaster eggshell patterning

Cellular model
Multi-cellular model
(5) GINsim \& EpiLog: from cellular to multi-cellular logical models
(6) Further reading

GINsim \& EpiLog: from cellular to multi-cellular logical models

P. Varela et al. (2018) F1000Research, 7:1145

Simulation, visualisation of the pattern evolution simulations of perturbations

- Define and analyse the cellular model with GINsim
- Integrate this model in an epithelium (i.e. an hexagonal grid of cells) with EpiLog
- Integration inputs \rightarrow signals from neighbouring cells, Positional inputs \rightarrow other environmental cues (constant)
- Simulate wild-type and perturbations

Contents

(1) Motivation
(2) Cellular automata

Brief introduction
A bit of history...
John Conway's game of life
Formal definition
Wolfram's cellular automata
(3) Composition of logical regulatory graphs

Introduction
Grid configuration \& sets of neighbours
Stable state analysis: challenges illustrated
Lateral inhibition \& updating schemes
Game of life (Conway CA) \& updating schemes
(4) Illustration
D. Melanogaster eggshell patterning

Cellular model
Multi-cellular model
(5) GINsim \& EpiLog: from cellular to multi-cellular logical models
(6) Further reading

Further reading

- P. Varela et al. (2018) EpiLog: A software for the logical modelling of epithelial dynamics. F1000Research, 7:1145
https://doi.org/10.12688/f1000research.15613.1
- A. Fauré et al (2014) A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects. PLoS Computational Biology, 10(3): e1003527.
http://dx.doi.org/10.1371/journal.pcbi. 1003527
- Nicolas Bredèche (2019) Automates Cellulaires 1D et 2D, support de cours
http://pages.isir.upmc.fr/~bredeche/Teaching/2i013/2018-2019/cours_2i013_2019_CA1DCA2D.pdf
- Jean-Philippe Rennard (2000) Introduction aux Automates Cellulaires, support de cours
http://www.rennard.org/alife/french/ac.pdf
- Nazim Fatès (2017) Asynchronous cellular automata https:/hal.inria.fr/hal-01653675

[^0]: R1
 Aos_ext:2, Rho_ext:1-2, Br_adj:0

 R7
 Aos ext:0-1, Rho ext:0, Br adj:1

 Reachability analysis
 With a delay in Pnt activity, F8 is not reachable

