Algorithms and data structures

Claudine Chaouiya

Instituto Gulbenkian de Ciência
PhD Program in Computational Biology
Oeiras, PORTUGAL
chaouiya@igc.gulbenkian.pt

October 2008

Introduction

- What's an algorithm?
- Abstract types vs data structures
- Iteration, Induction, Recursion...
- Problem classification and algorithm quality
- Few mathematical complements - asymptotic notation
- Few mathematical complements: Recurrence relations

Al-Khwarizmi (780-850), Khiva, Uzbekistan
A set of operating rules whose application allows the resolution of a given problem through a finite number of operations.

Example: Euclid's algorithm (one of the oldest algorithms known, around 300 BC) calculates the greatest common divisor of two non-zero integers

FUNCTION GCD (a, b)
IF b = O RETURN a
ELSE RETURN GCG(b, a mod b)

FUNCTION GCD (a, b)
WHILE b $\neq 0$
t := b
$\mathrm{b}:=\mathrm{a} \bmod \mathrm{b}$
a := t
RETURN a

We have

- a problem Find the number of
- an instance is defined by some data 'A' in "GAGATCAGACC"
- resolution produces some results 4

A program is an implementation of an algorithm i.e. its translation into a language "understandable" by a computer
but... do not reduce algorithms to computational problem resolution
an algorithm is independent of the programming language used to implement it

Defining an algorithm:

a finite set of operations on a given amount of that must terminate each operation must be: defined (non ambiguous) \& effective (can be performed by a computer)

Pseudo-code: informal language Flowchart: graphical presentation

3 Control structures:

- sequence
- selection (if, if/else, switch)
- repetition (while, do / while, for)

Flowchart

Starting/terminating point

while

Again... Euclid's algorithm

Good principles (Structured programming)

- define the specification (what the algorithm does, not how it does)
- legibility and comments
- modularity
- avoid branching instruction (go to), use
- loops while, for,
- conditional instruction if - then - else
- procedures or functions
- use recursion (recursivity), which allows short and clear description

Abstract types: abstractions used to formulate problems (lists trees, graphs...)
Data structures: concrete representations (implementations) of abstract types.

- we use real or integer in most (if not all) of programming languages as abstract types (don't care of their implementation).
- the abstract type list is the primary type provided by LISP

Name	List
Uses	integer,element
Operations	ith: (List,integer) \rightarrow element
	card:(List) \rightarrow element

- a contiguous representation type LIST =array [1..N] of char

1	2	3				
0	l	a	\ldots	$?$	\ldots	

End
n

- a linked representation type LIST $=\uparrow$ cell;
cell=record val:char; link:LIST
end;

Recursivity:

applying a function as a part of the definition of that same function.

- a base case(s), for which the solution is known \rightarrow termination condition,
- a recursive step.

Factorial

$$
\begin{aligned}
& 0!=1 \\
& n!=n(n-1)!n>0
\end{aligned}
$$

Fibonacci numbers

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} n>1
\end{aligned}
$$

Given a problem \longrightarrow decidability (existence of an algorithm)
Termination problem: Does it exist an algorithm which answers YES or NO to the question: " P terminates on D " for any program P and any entry D

It has been proved that there is no algorithm to solve this problem
\longrightarrow correctness and termination Manfred Kerber's course
\longrightarrow complexity

Given a problem \longrightarrow decidability (existence of an algorithm)
Termination problem: Does it exist an algorithm which answers YES or NO to the question: "P terminates on D " for any program P and any entry D

It has been proved that there is no algorithm to solve this problem
\longrightarrow correctness and termination \uparrow Manfred Kerber's course
\longrightarrow complexity
Travelling salesman problem (TSP): given a weighted non-oriented complete graph with n nodes, find a minimal hamiltonian cycle.

ABCD $\rightarrow 5+6+1+4=16$
ABDC $\rightarrow 5+3+1+2=11$
ACBD $\rightarrow 2+6+3+4=15$

- Algorithm: enumerate all hamiltonian cycles, choose the best
- $\frac{(n-1)!}{2}$ hamiltonian cycles
$n=20 \rightarrow 19$ centuries on a computer able to determine 10^{6} cycles $\mathrm{p} / \mathrm{sec}$

TSP is a well-known representant of a class of problems classified as NP-hard.

- performance analysis, independently of implementation
- comparison of algorithms

Complexity of an algorithm = time and/or memory space necessary for its execution

A reference computer:

- access (and storage) done in a fixed amount of time
- one operation performed at a time

Execution time $\propto \sharp$ elementary operations

Examples:
(1) search an item in a list \rightarrow number of comparisons
(2) sorting a list \rightarrow number of comparisons and of moves
(3) matrix product \rightarrow number of product and sum operations

To calculate the complexity (in time), count elementary operations,

- sequence: add
- conditional branching: upper-bound
- loop: $\sum_{i} . P(i), P(i)$ being the number of operations for the i th execution of the lopp (i control variable of the loop)
- function call: number of operations of the function
- recursive function: solving recurrence relations

$$
T(n)=f(T(k)), k<n .
$$

Example: the factorial function
FUNCTION fact(Integer n): Integer n \{
$\mathrm{p}=1$
FOR $\mathrm{i}=2 \mathrm{TO} \mathrm{n}$

$$
\mathrm{p}=\mathrm{p} * \mathrm{i}
$$

RETURN p
elementary operation: the product of 2 integers $\sum_{i=1 \ldots n} 1=n$
FUNCTION fact(Integer n): Integer n \{
IF ($\mathrm{n}==0$) RETURN 1
ELSE RETURN $n * f a c t(n-1)$
\}
$T(0)=0$ and $T(n)=T(n-1)+1, \forall n \geq 1$ easily solved: $T(n)=n$.

Example: sequential search (an integer x in a list L of size n)
FUNCTION search(List L, Integer x) : Boolean \{
i=1
WHILE (i<=n AND (x!=L[i])

$$
i=i+1
$$

IF (i>n) RETURN false
ELSE RETURN true

Example: sequential search (an integer x in a list L of size n)
FUNCTION search(List L, Integer x) : Boolean \{
i=1
WHILE (i<=n AND (x!=L[i])

$$
i=i+1
$$

IF (i>n) RETURN false
ELSE RETURN true
\}
elementary operations: comparisons (one by iteration) if $x \notin L \rightarrow n$, otherwise \rightarrow rank of x in L
Loop invariants: properties true at each iteration at the $1^{\text {st }}$ iteration $j=1$
at the $k^{\text {th }}$ iteration $j=k$ and $\forall i=1 \ldots k-1, L[i] \neq x$
End condition(s):
if at the $k^{\text {th }}$ iteration $k \leq \operatorname{Card}(L)$ and $L[k]=x$
if $k=\operatorname{Card}(L)+1$

Other performance criteria

(1) memory size: usual compromise between space and time
(2) simplicity: implementation and maintainability
(3) adequacy to the data: e.g. for a sorting algorithm, is the list almost sorted?

Other performance criteria

(1) memory size: usual compromise between space and time
(2) simplicity: implementation and maintainability
(3) adequacy to the data: e.g. for a sorting algorithm, is the list almost sorted?
D_{n} set of entries of size $n, C_{A}(d)$ complexity of algorithm A for entry d :

- best case complexity: $\operatorname{Min}_{A}(n)=\min \left\{C_{A}(d), \quad d \in D_{n}\right\}$
- worst case complexity: $\operatorname{Max}_{A}(n)=\max \left\{C_{A}(d), \quad d \in D_{n}\right\}$
- average case complexity: $\operatorname{Aver}_{A}(n)=\sum_{d \in D_{n}} p(d) C_{A}(d)$, $p(d)$ probability to get entry d. If all entries are equally likely, then

$$
\operatorname{Aver}_{A}(n)=\frac{1}{\operatorname{Card}\left(D_{n}\right)} \sum_{d \in D_{n}} C_{A}(d)
$$

$\operatorname{Min}_{A}(n) \leq \operatorname{Aver}_{A}(n) \leq \operatorname{Max}_{A}(n), \quad \forall n$

Insertion sort

PROCEDURE INSERTION_SORT(List A)
FOR i $=1$ to $\operatorname{Card}(A)-1$
value $=A[i]$
j = i-1
WHILE j >= 0 AND A[j] > value
$A[j+1]=A[j]$
$j=j-1$
$A[j+1]=$ value

Insertion sort

PROCEDURE INSERTION_SORT(List A)

$$
\begin{aligned}
& \text { FOR } \begin{array}{l}
i=1 \text { to } \operatorname{Card}(A)-1 \\
\text { value }=A[i] \\
j=i-1 \\
\text { } \left.\begin{array}{l}
\text { WHILE } j \\
>=0 \text { AND } A[j]>\text { value } \\
A[j
\end{array}+1\right]=A[j] \\
j=j-1 \\
A[j+1]=\text { value }
\end{array}
\end{aligned}
$$

- The outer loop carried out $n-1$ times.
- The inner loop carried out i times in the worst case; half that often on average. The number of comparisons in the worst case is

$$
\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1=\sum_{i=1}^{n-1} i \frac{n(n-1)}{2}
$$

In the average case it is $n(n-1) / 4$

Product of square matrices $(n \times n): C=A B$

FUNCTION PRODUCT(Matrix A,B): Matrix \{
FOR i=1 TO n
FOR $\mathrm{j}=1 \mathrm{TO} \mathrm{n}$
C $[i, j]=0$
FOR $\mathrm{k}=1$ TO n
$C[i, j]=C[i, j]+A[i, k] * B[k, j]$
RETURN C

Product of square matrices $(n \times n): C=A B$

FUNCTION PRODUCT(Matrix A,B): Matrix \{
FOR i=1 TO n
FOR $\mathrm{j}=1 \mathrm{TO} \mathrm{n}$

$$
C[i, j]=0
$$

FOR k=1 TO n

$$
C[i, j]=C[i, j]+A[i, k] * B[k, j]
$$

RETURN C
\}

Here, elementary operations are the multiplications of integers,

$$
\operatorname{Min}(n)=\operatorname{Aver}(n)=\operatorname{Max}(n)=\sum_{1}^{n} \sum_{1}^{n} \sum_{1}^{n} 1=n^{3}
$$

Sequential search (an integer \mathbf{x} in a list L of size n)

```
FUNCTION search(List L, Integer x) : Boolean \{
    i=1
    WHILE ( \(\mathrm{i}<=\mathrm{n}\) AND ( \(\mathrm{x}!=\mathrm{L}[\mathrm{i}]\) )
    \(i=i+1\)
    IF (i>n) RETURN false
    ELSE RETURN true
```

\}

Elementary operations are comparisons, $\operatorname{Min}(n)=1$ and $\operatorname{Max}(n)=n$. What about the average case knowing that: $p(x \in L)=q$ and if $x \in L$, $p(L[i]=x)=p(L[j]=x), \forall i, j=1, \ldots, n$

Sequential search (an integer \mathbf{x} in a list L of size n)

FUNCTION search(List L, Integer x) : Boolean \{
i=1
WHILE ($\mathrm{i}<=\mathrm{n}$ AND ($\mathrm{x}!=\mathrm{L}[\mathrm{i}]$)

$$
i=i+1
$$

IF (i>n) RETURN false
ELSE RETURN true
\}
Elementary operations are comparisons, $\operatorname{Min}(n)=1$ and $\operatorname{Max}(n)=n$.
What about the average case knowing that: $p(x \in L)=q$ and if $x \in L$, $p(L[i]=x)=p(L[j]=x), \forall i, j=1, \ldots, n$

- $D_{n, i}$ set of entries s.t. $L[i]=x, p\left(D_{n, i}\right)=\frac{q}{n}$,
- $D_{n, 0}$ set of entries s.t. $x \notin L, p\left(D_{n, 0}\right)=1-q$, - $\operatorname{cost}\left(D_{n, i}\right)=i$, for $i \neq 0$ and $\operatorname{cost}\left(D_{n, 0}\right)=n$,
$\operatorname{Aver}(n)=\sum_{i=0}^{n} p\left(D_{n, i}\right) * \operatorname{cost}\left(D_{n, i}\right)=(1-q) n+\frac{q}{n} \sum_{i=1}^{n} i=(1-q) n+\frac{q(n+1)}{2}$

Asymptotic notations

Bounding the asymptotical execution time of an algorithm
A fonction $I N \rightarrow I N$: (size of the problem) \rightarrow (number of operations)

- Notation Θ (asymptotically tight bound):
$\Theta(g(n))=\left\{f(n): \exists c_{1}, c_{2}>0, \exists k\right.$,

$$
\left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq k\right\}
$$

$f \in \Theta(g(n)$ is written $f(n)=\Theta(g(n))$

source: http://www.nist.gov/dads/
Examples: $1 / 2 n^{2}-3 n=\Theta\left(n^{2}\right)$ but $n^{3} \neq \Theta\left(n^{2}\right)$
For all polynomial $P(n)=\sum_{i=0}^{d} a_{i} n^{i}, a^{d}>0, P(n)=\Theta\left(n^{d}\right)$.an $\ldots \ldots$,

- Notation O (asymptotic upper bound):
$O(g(n))=\left\{f(n): \exists c_{1}, k>0, \quad 0 \leq f(n) \leq c g(n), \forall n \geq k\right\}$

- Notation Ω (asymptotic lower bound):
$\Omega(g(n))=\left\{f(n): \exists c_{1}, k>0, \quad 0 \leq c g(n) \leq f(n), \forall n \geq k\right\}$

Additional remarks

Complexity of some algorithms depends on several parameters: e.g. on graphs, numbers of nodes and edges

$$
\begin{aligned}
f(n, p)= & O(g(n, p)) \Leftrightarrow \exists c \in \mathbb{R}^{*+}, \exists\left(n_{0}, p_{0}\right) \in I N^{2} \text { s.t. } \\
& \forall n>n_{0}, \forall p>p_{0}, \quad f(n, p) \leq g(n, p) .
\end{aligned}
$$

- $g=O(g)$ and $g=\Theta(g)$
- $f=\Theta(g) \Rightarrow g=\Theta(f)$
- $f=O(g), g=O(h) \Rightarrow f=O(h)$
- $f=\Theta(g), g=\Theta(h) \Rightarrow f=\Theta(h)$
- $f=O(g) \Rightarrow \lambda f=O(g),\left(\lambda \in R^{*+}\right)$
- $f=\Theta(g) \Rightarrow \lambda f=\Theta(g),\left(\lambda \in \mathbb{R}^{*+}\right)$
- $f_{1}=O\left(g_{1}\right), f_{2}=O\left(g_{2}\right) \Rightarrow f_{1}+f_{2}=O\left(\max \left(g_{1}, g_{2}\right)\right)$ (idem for Θ)
- f_{1} and f_{2} s.t. $f_{1}-f_{2} \geq 0$,

$$
\begin{aligned}
& f_{1}=O\left(g_{1}\right), f_{2}=O\left(g_{2}\right) \Rightarrow f_{1}-f_{2}=O\left(g_{1}\right) \\
& f_{1}=\Theta\left(g_{1}\right), f_{2}=\Theta\left(g_{2}\right), g_{2}=O\left(g_{1}\right), g_{1} \text { is not } O\left(g_{2}\right) \Rightarrow f_{1}-f_{2}=\Theta\left(g_{1}\right)
\end{aligned}
$$

- $f_{1}=O\left(g_{1}\right), f_{2}=O\left(g_{2}\right) \Rightarrow f_{1} f_{2}=O\left(g_{1} g_{2}\right)$ (idem for Θ)

Determine if n is odd or even
Finding an item in a sorted array using binary search Finding an item in an unsorted list
Sorting a list with heapsort
Sorting a list with insertion sort
Multiplying two $n \times n$ matrices by a simple algorithm Finding the shortest path on a weighted directed graph Exact solution of the travelling salesman problem (shortest path in a network, visiting each node once)

$$
\begin{aligned}
& O(1) \\
& O(\log n) \\
& O(n) \\
& O(n \log n) \\
& O\left(n^{2}\right) \\
& O\left(n^{3}\right) \\
& O\left(n^{d}\right), d>1 \\
& O\left(c^{n}\right)
\end{aligned}
$$

constant
logarithmic linear quasilinear quadratic cubic polynomial exponential

n	n^2	n^5	$2^{\wedge} n$	n!	
1	1	1	2	1	
2	4	32	4	2	
4	16	1024	16	24	
10	100	100000	1024	3628800	
20	400	3200000	1048576	2,4329E+18	
60	3600	777600000	$1,15292 \mathrm{E}+18$	8,32099E+81	
1	60	12960000	$1,92154 \mathrm{E}+16$	1,38683E+80	seconds
	1	216000	3,20256E+14	2,31139E+78	minutes
		3600	$5,3376 \mathrm{E}+12$	$3,85231 \mathrm{E}+76$	hours
		150	$2,224 \mathrm{E}+11$	$1,60513 \mathrm{E}+75$	days
			609315018,1	$4,39761 E+72$	years

Execution time of a recursive algorithm generally defined as a recurrence relation: cost $T(n)$ for an entry of size n is function of $T(p), p<n$. Example: function fact: $T(0)=0$ and $T(n)=T(n-1)+1, \forall n \geq 1$
A recurrence relation always composed by two equations: $1 /$ for the base case, and 2/ for the general case
(1) Linear recurrence relations of order k :

$$
T(n)=f(n, T(n-1), \ldots, T(n-k))+g(n)
$$

with, $k \geq 1$ a constant (integer), f linear function of $T(i), i=n-k \ldots, n-1, g$ a function of n.
(2) Partition recurrence relations:

$$
T(n)=a T(n / b)+d(n)
$$

with, a, b constants, d a function of n.

Some examples of resolution

Linear recurrence relations, write the relation for $n, n-1, \ldots, 1$, multiply by a convenient factor, sum and simplify:
$T(n)=T(n-1)+2^{n}, \quad T(0)=1$

Some examples of resolution

Linear recurrence relations, write the relation for $n, n-1, \ldots, 1$, multiply by a convenient factor, sum and simplify:

$$
T(n)=T(n-1)+2^{n}, \quad T(0)=1
$$

$$
\begin{array}{ll}
T(n) & =T(n-1)+2^{n} \\
T(n-1) & =T(n-2)+2^{n-1} \\
T(n-2) & =T(n-3)+2^{n-2}
\end{array}
$$

$$
T(1) \quad=T(0)+2
$$

$$
T(0) \quad=1
$$

$$
\Rightarrow T(n)=\sum_{i=0}^{n} 2^{i}=2^{n}-1
$$

Some examples of resolution

Partition recurrence relations, using a recursive tree

$$
T(n)=2 T(n / 2)+n^{2}, T(0)=\text { cste }
$$

Let assume $n=2^{p}$ and cste $=0$

Outline

(2) Sequential data structures

- Generalities
- Search, insertion, deletion
- Queues and stacks
- Sorting

Sequential data structures

Sequential structures or Lists (linked and arrays)

Finite sequence of elements of a given type.
Operations:

- insertion, deletion
- lookup
- concatenation...

Arrays:

Set of elements accessible by their index.
Generally, all elements have the same type (e.g. array of integers)
Static arrays (fixed size) versus dynamic arrays
Constant access time (contiguous storage, and index access)
Not adequate for insertion or deletion

| 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | | |
| 6 | 7 | 2 |
| 1 | 5 | 9 |
| 2 | 3 | 4 |

Linked lists

are recursive structures:
A list is either the empty list, or it is a head (an element) followed by a tail (a list).
Singly-linked list has one link per node that points to the successor in the list, or to a null value (or empty list) if it is the last node.

Doubly-linked list has two links per node that point to the predecessor in the list, or to a null value it is the first node, and to the successor, or to a null value if it is the last node.

Circularly-linked list is a singly or doubly linked list s.t. the first and final nodes are linked together.

Search, insertion, deletion

Search
Searching an element in an array:

```
FUNCTION search(Elt \(x\), Array T): Integer p \{
```

 \(\mathrm{p}=0\)
 WHILE (\(\mathrm{p}<\mathrm{card}(\mathrm{T})\) AND \(\mathrm{T}[\mathrm{p}]<>\mathrm{x}\))
 \(\mathrm{p}=\mathrm{p}+1\)
 if (\(\mathrm{p}<\mathrm{card}(\mathrm{T})\)) RETURN p
 else RETURN -1
 \}
FUNCTION search(Elt x, Array T): Integer p \{
$\mathrm{p}=0$
WHILE ($\mathrm{p}<\mathrm{card}(\mathrm{T})$ AND $\mathrm{T}[\mathrm{p}]<\mathrm{x}$)
$\mathrm{p}=\mathrm{p}+1$
if ($\mathrm{p}<\mathrm{card}(\mathrm{T}$) AND $\mathrm{T}[\mathrm{p}]=\mathrm{x}$) RETURN p
else RETURN -1
\}
worst case $x \notin T(\Omega(n))$, best case $x=T[0](O(1))$

Search

Searching an element in a singly-linked list:
FUNCTION search(Elt x, List T): Integer p \{
$\mathrm{p}=0$
$\mathrm{L}=\mathrm{T}$
WHILE (L.succ<>null AND L.data<>x)
L=L. succ, $p=p+1$
if (L.data=x) RETURN p
else RETURN -1
\}

Insertion, deletion

Inserting (deleting) an element in an array:

- find the position
- move remaining elts forward (backwards)
- insert delete)

Inserting (deleting) an element in a linked list:

- find the position
- insert (delete)

Insertion

FUNCTION insert(Elt x, Integer n, List L) \{
$\mathrm{p}=$ create (L, x, null, null)
IF (L=null) L=p
ELSE if($\mathrm{n}=0$)

$$
\text { p.succ=L, L.pred=p, } L=p
$$

ELSE

$$
\begin{aligned}
& \text { q=L, } i=0 \\
& \text { WHILE(q.succ<>null AND } i<n) \\
& \quad q=q \cdot \text { succ, } i=i+1 \\
& \operatorname{IF} \quad(i=n) \\
& \quad \text { p.pred=q.pred, p.succ=q, q.pred=p }
\end{aligned}
$$

ELSE

p.pred=, q. succ=p

- What happens if $n>\operatorname{card}(L)$?
- What happens if $n<0$?

Queues and stacks

Insertion (and deletion) allways done at the same point:

LIFO / Stack

Sorting

Insertion sort already seen.
PROCEDURE INSERTION_SORT(List A)

$$
\begin{aligned}
& \text { FOR } \begin{array}{l}
i=1 \text { to } \operatorname{Card}(A)-1 \\
\text { value }=A[i] \\
j=i-1 \\
\text { WHILE } j>=0 \text { AND } A[j]>\text { value } \\
A[j+1]=A[j] \\
j=j-1 \\
A[j+1]=\text { value }
\end{array} .
\end{aligned}
$$

- Simple to implement
- Efficient if the number of elements is small
- average time is $n^{2} / 4$, linear in the best case

Bubble sort

Probably the most inefficient sorting algorithm in common usage!

FUNCTION bubble_sort(List A) FOR i=0 TO $\operatorname{card}(N)-2$ FOR $j=\mathrm{N}-1$ DOWNTO i IF $A[j-1]>A[j]$ swap (A[j-1], A[j])

$\begin{aligned} & i=1 \\ & \mathrm{j}=5 . .1 \end{aligned}$	0	1	2	3	4	5
	1	4	3	9	2	8
	1	4	3	9	2	8
	1	4	3	2	9	8
	1	4	2	3	9	8
	1	2	4	3	9	8
1						
$\begin{aligned} & \mathbf{i}=\mathbf{2} \\ & \mathrm{j}=5 . .2 \end{aligned}$	1	2	4	3	9	8
	1	2	4	3	8	9
	1	2	4	3	8	9
	1	2	3	4	8	9

What are the best and worst cases? Why is it in $\Theta\left(n^{2}\right)$? How could you improve it? What are then the best and worst cases orders?

Merge sort

A divide-and-conquer algorithm. Given a problem P of size n base case direct solution for P when n is small enough, divide break down P into two or more sub-problems of size $q<n$,
conquer determine the solution of the sub-problems combine the solution of $P(n)$ is a combination of the solutions of the sub-problems.
Let n be the size of the list:
(1) if $n=0$ or 1 , the list is sorted;
(2) if $n>1$, divide the list into 2 sublists of about $n / 2$;
(3) sort the 2 sublists recursively (re-applying merge sort);
(-) merge the 2 sublists back into one sorted list.

Merge sort

FUNCTION merge_sort (List A, Integer left,right)\{ IF (left<right)
middle=(left+right) DIV 2
merge_sort(A,left,middle)
merge_sort(A,middle+1, right)
merge(A,left,right)
\}

Merging pseudo-code

FUNCTION merge(Array A; Integer left,mid,right)\{

```
FOR (i=left TO mid)
        aux[i]=A[i]
FOR (i=right DOWNTO mid+1)
            aux[right+mid+1-i]=A[i]
i=left, j=right
FOR (k=left TO right)
    IF (aux[i]<aux[j])
        A[k]=aux[i], i=i+1
    ELSE
        A[k]=aux[j], j=j-1
```

3	5	9	8	2	1	1	1				

What is the cost of merge for an array of n elements? What is the cost of the merge-sort? (you might assume that $n=2^{p}$)

Quick sort

Let n be the size of the list, and left $=0$, right $=n-1$
(1) divide the list from left to right into 2 sublists s.t. all elements of the first list are smaller all elements of the second, call mid the position of the partition;
(2) conquer by recursively sorting the two sublists (from left to mid -1 , from mid +1 to right);
(0) if right - left $=0$ do nothing!
quick_sort (Array A; Integer L, R) \{
IF ($\mathrm{L}<\mathrm{R}$)
M=partition(A,L,R)
quick_sort(A,L,M-1)
quick_sort ($A, M+1, R$)
\}

```
quick_sort(Array A; Integer L,R){
    IF (L<R)
        M=partition(A,L,R)
        quick_sort(A,L,M-1)
        quick_sort(A,M+1,R)
}
partition(Array A; Integer L,R):Integer M{
    pivot=A[L], i=L+1, j=R
    WHILE (A[i]<=pivot) i=i+1
    WHILE (A[j]>=pivot) j=j-1
    WHILE (i<j)
        swap(A[i],A[j])
            WHILE (A[i]<=pivot) i=i+1
            WHILE (A[j]>=pivot) j=j-1
        swap(A[L],A[j])
        RETURN M=j
```

\}

- What happens if pivot is the smallest element?
- What would be a good property for the pivot?
- What is the worst case? In this case, what is the order of the quick-sort?

On average, the quick-sort performs in $O(n \lg n$) (number of comparisons.)

- Prove that the best case is in $\Theta(n \lg n)$.

ADDENDUM on the resolution of recurrence relations

Theorem: Let consider $a \geq 1$ and $b>1,2$ constants, and $f(n)$ a function, and let $T(n)$ defined for positive integers by:

$$
T(n)=a T(n / b)+f(n)
$$

where n / b is either $\lfloor n / b\rfloor$ either $\lceil n / b\rceil$. Then, $T(n)$ can be asymptotically bounded as follows:
(1) If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ with $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
(2) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
(0 If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ with $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for a constant $c<1$ and n large enough, then $T(n)=\Theta(f(n))$.

In all cases, compare $f(n)$ with $n^{\log _{b} a}$. The solution is determined by the maximum of these 2 functions:

- $n^{\log _{b} a}$ is greater, the solution is $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- both functions have the same "size", the solution is multiplied by a logarithmic factor: $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)=\Theta(f(n) \lg n)$.
- $f(n)$ is greater, $T(n)=\Theta(f(n)$ (plus a regularity condition on f)..

These 3 cases do not cover all possibilities: $T(n)=2 T(n / 2)+n \lg n(f$ is not polynomially greater than $n^{\log _{b} a}=n$ since $(n \lg n) / n=\lg n$ is asymptotically less than n^{ϵ}, whatever the positive constante ϵ.

Example:
$T(n)=9 T(n / 3)+n: f(n)=n, n^{\log _{b} a}=n^{2}, f(n)=O\left(n^{\log _{3} 9-\epsilon}\right)$, with
$\epsilon=1, \Rightarrow T(n)=\Theta\left(n^{2}\right)$.
see Cormen et al for details and proof of the theorem
(3) Binary Trees

- Representations of binary trees
- Traversing trees
- Binary Search Trees

Binary trees

A binary tree is empty (\emptyset) or on the form $B=<o, B_{1}, B_{2}>$ where B_{1} and B_{2} are disjoint binary trees and o is a node called root.

Binary tree representing the arithmetic expression $(x-(2 * y))+((x+(y / z)) * 3)$

Note that $<0,<0, \emptyset, \emptyset>, \emptyset>$ and $<0, \emptyset,<o, \emptyset, \emptyset \gg$ are different.

Basic operations on binary trees

- test if a tree is empty
- access the root
- access the left child $\left(B_{1}\right)$
- access the right child $\left(B_{2}\right)$

Measures on binary trees

- a node has at most 2 children; if its has no child, it is a leaf, it is a single node if it has a unique child, an internal node otherwise;
- the size of a BT is its number of nodes:

$$
\operatorname{size}(\emptyset)=0, \quad \operatorname{size}\left(<o, B_{1}, B_{2}>\right)=1+\operatorname{size}\left(B_{1}\right)+\operatorname{size}\left(B_{2}\right)
$$

- the depth of a node n in $<o, B_{1}, B_{2}>$ is:

$$
\operatorname{depth}(n)=0 \text { if } n=o
$$

$$
\operatorname{depth}(n)=1+\operatorname{depth}(p) \text { where } p \text { s.t. } \mathrm{n} \text { child of } p
$$

- the depth (or height) of a tree is given as the maximum of its nodes depth.
- the traversing length of a tree B is the sum of its nodes depths:

$$
L C(B)=\sum_{n \in B} h(n)
$$

The total number of BT of size n is $b_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

Special cases

- A degenerated tree is a BT where for each parent node, there is only one associated child node (\Rightarrow in performance measures, the $B T$ behaves like a linked list).
- A full binary tree is a $B T$ in which every node has zero or two children.
- A complete binary tree is a full $B T$ in which all leaves are at the same depth.
- A perfect binary tree is a BT for which all levels are complete, but possibly its last level (in this case, the leaves are grouped at the left).
- How many degenerated BTs of size 3 ?
- How many full BTs of sizes 3, 4 and 5?
- Give a complete BT of size 7 .
- Give a perfect BT with 5 nodes.
- Give the total number of nodes in a complete BT of depth n.
- Prove that, for a BT of n nodes, its depth h verifies:

$$
\lfloor\lg n\rfloor \leq h \leq n-1
$$

Occurrences and hierarchical numbering

Occurrence of a node: a string of 0 and 1 , which characterizes the path from the root to that node.

- The occurrence of the root is the empty string.
- If the occurrence of a node is μ, its left child's occurrence is $\mu 0$, its right child's occurrence is $\mu 1$.

In a complete binary tree, the hierarchical numbering attributes an increasing natural number (beginning with 1) all nodes from the root, level after level, and from the left to the right on each level.

Let consider a node with number i, its left child has number $2 i$ and its right child $2 i+1$.

Prove that if a node in a complete tree has occurrence μ and for hierarchical numbering i, then $i=2^{\lfloor\lg i\rfloor}+m$, where m is the integer which binary representation is μ.

Representations of binary trees
Reproducing the recursive definition of $B T$:

Representations of binary trees

Or using an array:

Storing perfect binary trees

At most one internal node with a unique left sub-tree and this node is on the last level but one.

Compact sequential representation based on the hierarchical numbering: If a node is numbered i, its left child is numbered $2 i$, its right child $2 i+1$.

Proof by induction.
Using the hierarchical numbering:

- $2 \leq i \leq n \Rightarrow$ the father of node i is i div 2
- $1 \leq i \leq n \operatorname{div} 2 \Rightarrow$ the left child of node i is $2 i$, its right child is $2 i+1$

Note: this representation can be used also for general BT. What happens e.g. for a degenerated tree?

Traversing trees Depth-first traversal

Depth-first traversal

FUNCTION traverse(BT A) \{
TREATMENT1
IF (A.left<>null) traverse(A.left)
TREATMENT2
IF (A.right<>null) traverse(A.right)
TREATMENT3
\}

- pre-order (prefix): only TREATMENT1
- in-order (infix): only TREATMENT2
- post-order (suffix): only TREATMENT3

Note that one cannot recover the hierarchical numbering with this traversal.

Binary Search Trees (BST)

Binary tree data structure such that a total order is defined on the values attached to the nodes and:

- left subtree of a node contains only values less than the node's value;
- right subtree of a node contains only values greater than or equal to the node's value.
An example (from Wikipedia)

\Longrightarrow related sorting algorithms and search algorithms such as in-order traversal can be very efficient.

Pseudo-code for the search in a BST

FUNCTION search(BT A, Integer val): Boolean\{
IF ($A=n u l l$) RETURN false
ELSE IF (A.value<val)
RETURN search(A.right,val)
ELSE IF (A.value>val)
RETURN search (A.left, val)
ELSE IF (A.value=val) RETURN true
ELSE RETURN false
\}
What is the worst case for this search procedure?
Write the pseudo-code for the insertion of a new value in a BST.

Outline

(4) Graphs

- Basic definitions
- Abtract data type
- Data structures
- Exploring graphs
- Topological sorting
- (Strongly) connected components

A huge number of real life problems expressed in terms of relational structures.

A graph $G=(X, \Gamma)$ is defined by a set X (of vertices) and a function $\Gamma: \rightarrow X$ (the arcs).

Alternatively a graph is denoted $G=(X, E)$, where E is the set of arcs. A subgraph of $G=(X, \Gamma)$ is a graph $\left(A, \Gamma_{A}\right)$ where $A \subset X$ and Γ_{A} defined by $\forall x \in A, \Gamma_{A} x=\Gamma x \cap A$
A partial graph of $G=(X, \Gamma)$ is a graph (X, Δ) where $\forall x, \Delta x \subset \Gamma x$.

Given (X, E),

- for an arc $u=(x, y) \in E, x$ is the initial vertex (source), y the terminal vertex (target), (y is said to be a successor of x),
- two arcs are adjacent if they are different and share a common vertex,
- two vertices $x, y \in X$ are adjacent if $x \neq y$ and $(x, y) \in E$ or $(y, x) \in E$,
- the indegree $\operatorname{deg}_{i}(x)$ of $x \in X$ is the cardinal of $\{(y, x) \in E\}$,
- the outdegree $\operatorname{deg}_{o}(x)$ of $x \in X$ is the cardinal of $\{(x, y) \in E\}$,
- the degree of x is $\operatorname{deg}(x)=\operatorname{deg}_{i}(x)+\operatorname{deg}_{o}(x)$.

Given (X, E),

- a path is a sequence $\left(u_{1}, \ldots u_{n}\right)$ of arcs in E, s.t. the target of u_{i} is the source of $u_{i+1}(i=1 \ldots n-1)$,
- the length of a path is the number of its arcs,
- a path $\left(u_{1}, \ldots u_{n}\right)$ is simple if $u_{i} \neq u_{j}, \forall i, j=1, \ldots n, i \neq j$, otherwise, it is composite,
- alternatively a path $\left(u_{1}, \ldots u_{n}\right)$ which meets the vertices $x_{1}, \ldots x_{n+1}$ is denoted $\left[x_{1}, \ldots x_{n+1}\right]$,
- a path is elementary if is does not meet the same vertex twice,
- a circuit is a finite path $\left[x_{1}, \ldots x_{k}\right]$ in which $x_{1}=x_{k}$,
- a loop is a circuit of length 1 (a single arc (x, x)),
- if Γ is reflexive (i.e. $(x, y) \Rightarrow(y, x) \in E$, the graph is said non-oriented or symmetric,
- an edge, is a set of two vertices $\{x, y\}$ s.t. $(x, y) \in E$ or $(y, x) \in E) \longrightarrow$ chains and cycles.

Given $G=(X, E)$,

- G is complete if $(x, y) \notin E \Rightarrow(y, x) \in E$,
- G is strongly connected if $\forall x, y \in X$ there is a path joining x and y,
- G is connected if $\forall x, y \in X$ there is a chain joining x and y,

- a tree is a connected non-oriented graph without cycle,
- a root in an oriented graph is a vertex r s.t. every vertex can be reached from r,
- an arborescence is an oriented graph which has a root and s.t. the corresponding non-oriented graph is a tree.

Given a graph $G=(X, E)$, non-oriented with $|X|=n$, the following properties are equivalent:
(1) G is connected without cycle (a tree),
(2) G is connected and if an edge is deleted it is no more connected,
(3) G is connected and has $n-1$ edges,
(1) G has no cycle, and the addition of one edge creates a cycle,
(0) G has no cycle and has $n-1$ edges,
(0) all pair of vertices is connected by a unique chain.

To specify a graph, give: the set of vertices and the set of arcs (pairs of vertices).
vertices are arbitrary numbered
Basic operations over vertices:
node : integer \longrightarrow vertex
arc: vertex, vertex \longrightarrow Boolean
num : vertex \longrightarrow integer
deg_o : vertex \longrightarrow integer
ith_succ : vertex, integer \longrightarrow vertex
by convention, successors of a vertex are numbered in an increasing order: $i<j \Rightarrow$ num(ith_succ $(x, i))<$ num(ith_succ $(x, j))$.

Scheme often encountered to process all successors of a vertex x :
FOR i=1 TO deg_o (x)
process(ith_succ (x,i))

When the graph can evolve, one has to consider
Basic operations over the graph:
card : graph \longrightarrow integer
empty_graph : \longrightarrow graph
add_node : graph \longrightarrow graph
add_arc: vertex,vertex,graph \longrightarrow graph
arc: vertex,vertex,graph \longrightarrow Boolean
deg_i : vertex, graph \longrightarrow integer
ith_succ : vertex,integer,graph \longrightarrow vertex

Using contiguous representations (arrays)
called adjacency matrix

F	T	T	F
T	F	T	T
T	T	F	F
F	T	F	F

The case of weighted graphs
2
space in $\theta\left(n^{2}\right)$ with $n=\operatorname{card}(G)$

Using linked structures (lists)

Using the lists of successors for each vertex (called adjacency lists)

space in $\Theta(n+p)$ with $n=\operatorname{card}(G), p=\sum_{i=1 \ldots n} \operatorname{deg}_{-}\left(\operatorname{node}^{(i)}\right)$

Depth First Search, recursive version

FUNCTION dfs(Graph G) \{
FOR $i=1$ to card (G)
$\operatorname{mark}[i]=f a l s e$
FOR $i=1$ to card (G)
IF NOT (mark[i]) dfs_visit(node (i))

FUNCTION dfs_visit(Vertex v)\{ mark[num(v)]=true FOR $j=1$ to $\operatorname{deg}(v)$ $s=i t h _\operatorname{succ}(v, j)$
$\mathrm{k}=\mathrm{num}$ (s)
IF NOT (mark[k])
dfs_visit(s)
\}

Depth First Search, recursive version

FUNCTION dfs(Graph G)\{
FOR $i=1$ to card(G)
mark[i]=false
FOR i=1 to card(G)
IF NOT (mark[i]) dfs_visit(node(i))

FUNCTION dfs_visit(Vertex v)\{ mark[num(v)]=true FOR $j=1$ to $\operatorname{deg}(v)$
$s=i t h _\operatorname{succ}(v, j)$
$\mathrm{k}=\mathrm{num}$ (s)
IF NOT (mark[k]) dfs_visit(s)
\}

Complexity analysis:

- adjacency matrix: $\Theta\left(n^{2}\right)$
- successors lists: $\Theta(\max (n, p))$

FUNCTION dfs_visit(Vertex v) \{
$\operatorname{mark}[n u m(v)]=$ true
*** PROCESS1 (v) ***
FOR $j=1$ to $\operatorname{deg}(v)$
s=ith_succ (v,j)
$\mathrm{k}=\mathrm{num}$ (s)
IF NOT (mark[k]) dfs_visit(node[k])
*** PROCESS2(v) ***
\}

Two classical orders for graph exploration (as for trees):

- prefix order (PROCESS1): s1, s3, s2, s6, s5, s7, s4, s9, s8
- suffix order (PROCESS2): s2, s6, s3, s5, s7, s1, s9, s4, s8

Arc classification

A spanning tree of a connected graph G is:

- (informally) a selection of edges that form a tree spanning every vertex,
- a maximal set of edges of G that contains no cycle,
- a minimal set of edges that connect all vertices,

DFS produces a spanning tree (or a forest if G is not connected) and allows a classification of the arcs:

- forward edges from a node to one successor,
- backward edges from a node to one predecessor,
- cross edges none of the previous ones,
- tree edges belong to the spanning tree itself, classified separately from forward edges.
If the graph is non-oriented, all of its edges are tree or backward edges.
A graph \mathbf{G} is acyclic iff dfs does not generate any backward edge.


```
Adapted algorithm (from Cormen et al.)
DFS ( \(G\) )
```

```
for each vertex \(u \in V[G]\)
```

for each vertex $u \in V[G]$
do color $[u] \leftarrow$ WHITE
do color $[u] \leftarrow$ WHITE
$\pi[u] \leftarrow$ NIL
$\pi[u] \leftarrow$ NIL
time $\leftarrow 0$
time $\leftarrow 0$
for each vertex $u \in V[G]$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
do if color $[u]=$ WHITE
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
DFS-VISIT (u)
color $[u] \leftarrow$ GRAY $\quad \triangleright$ White vertex u has just been discovered.
time \leftarrow time +1
$d[u] \leftarrow$ time
for each $v \in \operatorname{Adj}[u] \quad \triangleright$ Explore edge (u, v).
do if color $[v]=$ wHITE
then $\pi[v] \leftarrow u$
DFS-VISIT(v)
color $[u] \leftarrow$ BLACK $\quad \triangleright$ Blacken u; it is finished.
$f[u] \leftarrow$ time \leftarrow time +1

```

```

Adapted algorithm (from Cormen et al.)
DFS (G)

```
```

for each vertex $u \in V[G]$

```
for each vertex \(u \in V[G]\)
    do color \([u] \leftarrow\) WHITE
    do color \([u] \leftarrow\) WHITE
        \(\pi[u] \leftarrow\) NIL
        \(\pi[u] \leftarrow\) NIL
time \(\leftarrow 0\)
time \(\leftarrow 0\)
for each vertex \(u \in V[G]\)
for each vertex \(u \in V[G]\)
    do if color \([u]=\) WHITE
    do if color \([u]=\) WHITE
            then DFS-VISIT \((u)\)
            then DFS-VISIT \((u)\)
DFS-VISIT ( \(u\) )
color \([u] \leftarrow\) GRAY \(\quad \triangleright\) White vertex \(u\) has just been discovered.
time \(\leftarrow\) time +1
\(d[u] \leftarrow\) time
for each \(v \in \operatorname{Adj}[u] \quad \triangleright\) Explore edge \((u, v)\).
        do if color \([v]=\) wHITE
            then \(\pi[v] \leftarrow u\)
                    DFS-VISIT( \(v\) )
    color \([u] \leftarrow\) BLACK \(\quad \triangleright\) Blacken \(u\); it is finished.
    \(f[u] \leftarrow\) time \(\leftarrow\) time +1
```



```
Adapted algorithm (from Cormen et al.)
DFS ( \(G\) )
```

```
for each vertex \(u \in V[G]\)
```

for each vertex $u \in V[G]$
do color $[u] \leftarrow$ WHITE
do color $[u] \leftarrow$ WHITE
$\pi[u] \leftarrow$ NIL
$\pi[u] \leftarrow$ NIL
time $\leftarrow 0$
time $\leftarrow 0$
for each vertex $u \in V[G]$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
do if color $[u]=$ WHITE
then DFS-VISIT (u)
then DFS-VISIT (u)
DFS-VISIT (u)
color $[u] \leftarrow$ GRAY $\quad \triangleright$ White vertex u has just been discovered.
time \leftarrow time +1
$d[u] \leftarrow$ time
for each $v \in \operatorname{Adj}[u] \quad \triangleright$ Explore edge (u, v).
do if color $[v]=$ wHITE
then $\pi[v] \leftarrow u$
DFS-VISIT(v)
color $[u] \leftarrow$ BLACK $\quad \triangleright$ Blacken u; it is finished.
$f[u] \leftarrow$ time \leftarrow time +1

```

```

Adapted algorithm (from Cormen et al.)
DFS (G)

```
```

for each vertex $u \in V[G]$

```
for each vertex \(u \in V[G]\)
    do color \([u] \leftarrow\) WHITE
    do color \([u] \leftarrow\) WHITE
        \(\pi[u] \leftarrow\) NIL
        \(\pi[u] \leftarrow\) NIL
time \(\leftarrow 0\)
time \(\leftarrow 0\)
for each vertex \(u \in V[G]\)
for each vertex \(u \in V[G]\)
    do if color \([u]=\) WHITE
    do if color \([u]=\) WHITE
            then DFS-VISIT \((u)\)
            then DFS-VISIT \((u)\)
DFS-VISIT ( \(u\) )
color \([u] \leftarrow\) GRAY \(\quad \triangleright\) White vertex \(u\) has just been discovered.
time \(\leftarrow\) time +1
\(d[u] \leftarrow\) time
for each \(v \in \operatorname{Adj}[u] \quad \triangleright\) Explore edge \((u, v)\).
        do if color \([v]=\) wHITE
            then \(\pi[v] \leftarrow u\)
                    DFS-VISIT( \(v\) )
color \([u] \leftarrow\) BLACK \(\quad \triangleright\) Blacken \(u\); it is finished.
\(f[u] \leftarrow\) time \(\leftarrow\) time +1
```



```
Adapted algorithm (from Cormen et al.)
DFS ( \(G\) )
```

```
for each vertex \(u \in V[G]\)
```

for each vertex $u \in V[G]$
do color $[u] \leftarrow$ WHITE
do color $[u] \leftarrow$ WHITE
$\pi[u] \leftarrow$ NIL
$\pi[u] \leftarrow$ NIL
time $\leftarrow 0$
time $\leftarrow 0$
for each vertex $u \in V[G]$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
do if color $[u]=$ WHITE
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
DFS-VISIT (u)
color $[u] \leftarrow$ GRAY $\quad \triangleright$ White vertex u has just been discovered.
time \leftarrow time +1
$d[u] \leftarrow$ time
for each $v \in \operatorname{Adj}[u] \quad \triangleright$ Explore edge (u, v).
do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$
DFS-VISIT(v)
color $[u] \leftarrow$ BLACK $\quad \triangleright$ Blacken u; it is finished.
$f[u] \leftarrow$ time \leftarrow time +1

```

```

Adapted algorithm (from Cormen et al.)
DFS (G)

```
```

for each vertex $u \in V[G]$

```
for each vertex \(u \in V[G]\)
    do color \([u] \leftarrow\) WHITE
    do color \([u] \leftarrow\) WHITE
        \(\pi[u] \leftarrow\) NIL
        \(\pi[u] \leftarrow\) NIL
time \(\leftarrow 0\)
time \(\leftarrow 0\)
for each vertex \(u \in V[G]\)
for each vertex \(u \in V[G]\)
        do if color \([u]=\) WHITE
        do if color \([u]=\) WHITE
            then \(\operatorname{DFS}-\operatorname{VISIT}(u)\)
            then \(\operatorname{DFS}-\operatorname{VISIT}(u)\)
DFS-VISIT ( \(u\) )
color \([u] \leftarrow\) GRAY \(\quad \triangleright\) White vertex \(u\) has just been discovered.
time \(\leftarrow\) time +1
\(d[u] \leftarrow\) time
for each \(v \in \operatorname{Adj}[u] \quad \triangleright\) Explore edge \((u, v)\).
        do if color \([v]=\) WHITE
            then \(\pi[v] \leftarrow u\)
                    DFS-VISIT( \(v\) )
    color \([u] \leftarrow\) BLACK \(\quad \triangleright\) Blacken \(u\); it is finished.
    \(f[u] \leftarrow\) time \(\leftarrow\) time +1
```



```
Adapted algorithm (from Cormen et al.)
DFS ( \(G\) )
```

```
for each vertex \(u \in V[G]\)
```

for each vertex $u \in V[G]$
do color $[u] \leftarrow$ WHITE
do color $[u] \leftarrow$ WHITE
$\pi[u] \leftarrow$ NIL
$\pi[u] \leftarrow$ NIL
time $\leftarrow 0$
time $\leftarrow 0$
for each vertex $u \in V[G]$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
do if color $[u]=$ WHITE
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
DFS-VISIT (u)
color $[u] \leftarrow$ GRAY $\quad \triangleright$ White vertex u has just been discovered.
time \leftarrow time +1
$d[u] \leftarrow$ time
for each $v \in \operatorname{Adj}[u] \quad \triangleright$ Explore edge (u, v).
do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$
DFS-VISIT(v)
color $[u] \leftarrow$ BLACK $\quad \triangleright$ Blacken u; it is finished.
$f[u] \leftarrow$ time \leftarrow time +1

```

```

Adapted algorithm (from Cormen et al.)
DFS (G)

```
```

for each vertex $u \in V[G]$

```
for each vertex \(u \in V[G]\)
    do color \([u] \leftarrow\) WHITE
    do color \([u] \leftarrow\) WHITE
        \(\pi[u] \leftarrow\) NIL
        \(\pi[u] \leftarrow\) NIL
time \(\leftarrow 0\)
time \(\leftarrow 0\)
for each vertex \(u \in V[G]\)
for each vertex \(u \in V[G]\)
        do if color \([u]=\) WHITE
        do if color \([u]=\) WHITE
            then \(\operatorname{DFS}-\operatorname{VISIT}(u)\)
            then \(\operatorname{DFS}-\operatorname{VISIT}(u)\)
DFS-VISIT ( \(u\) )
color \([u] \leftarrow\) GRAY \(\quad \triangleright\) White vertex \(u\) has just been discovered.
time \(\leftarrow\) time +1
\(d[u] \leftarrow\) time
for each \(v \in \operatorname{Adj}[u] \quad \triangleright\) Explore edge \((u, v)\).
        do if color \([v]=\) wHITE
            then \(\pi[v] \leftarrow u\)
                    DFS-VISIT( \(v\) )
color \([u] \leftarrow\) BLACK \(\quad \triangleright\) Blacken \(u\); it is finished.
\(f[u] \leftarrow\) time \(\leftarrow\) time +1
```



```
Adapted algorithm (from Cormen et al.)
DFS(G)
```

```
for each vertex \(u \in V[G]\)
```

for each vertex $u \in V[G]$
do color $[u] \leftarrow$ WHITE
do color $[u] \leftarrow$ WHITE
$\pi[u] \leftarrow$ NIL
$\pi[u] \leftarrow$ NIL
time $\leftarrow 0$
time $\leftarrow 0$
for each vertex $u \in V[G]$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
do if color $[u]=$ WHITE
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
then $\operatorname{DFS}-\operatorname{VISIT}(u)$
DFS-VISIT (u)
color $[u] \leftarrow$ GRAY $\quad \triangleright$ White vertex u has just been discovered.
time \leftarrow time +1
$d[u] \leftarrow$ time
for each $v \in \operatorname{Adj}[u] \quad \triangleright$ Explore edge (u, v).
do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$
DFS-VISIT(v)
color $[u] \leftarrow$ BLACK $\quad \triangleright$ Blacken u; it is finished.
$f[u] \leftarrow$ time \leftarrow time +1
(u, v) is a forward edge (grey or green) if $d[u]<d[v]$
(u, v) is a cross edge (red) if $d[u]>d[v]$

```

```

Adapted algorithm (from Cormen et al.)
DFS(G)

```
```

for each vertex }u\inV[G

```
for each vertex }u\inV[G
    do color[u]}\leftarrow\mathrm{ WHITE
    do color[u]}\leftarrow\mathrm{ WHITE
        \pi[u]}\leftarrow\textrm{NIL
        \pi[u]}\leftarrow\textrm{NIL
time \leftarrow0
time \leftarrow0
for each vertex }u\inV[G
for each vertex }u\inV[G
        do if color [u] = WHITE
        do if color [u] = WHITE
            then DFS-VISIT (u)
            then DFS-VISIT (u)
DFS-VISIT ( \(u\) )
color \([u] \leftarrow\) GRAY \(\quad \triangleright\) White vertex \(u\) has just been discovered.
time \(\leftarrow\) time +1
\(d[u] \leftarrow\) time
for each \(v \in \operatorname{Adj}[u] \quad \triangleright\) Explore edge \((u, v)\).
        do if color \([v]=\) wHITE
            then \(\pi[v] \leftarrow u\)
                    DFS-VISIT( \(v\) )
color \([u] \leftarrow\) BLACK \(\quad \triangleright\) Blacken \(u\); it is finished.
    \(f[u] \leftarrow\) time \(\leftarrow\) time +1
```

$G_{\pi}=\left(S, A_{\pi}\right)$, with $A_{\pi}=\{(\pi[v], v), v \in S$ and $\pi[v] \neq$ NIL $\}$ is the spanning
forest generated by dfs

Breadth First Search

Unlike dfs, bfs is not naturally recursive.
Uses a Queue (a list with a FIFO policy) with the basic operations:

- $\operatorname{empty}(Q)$ is true if Q is empty, false otherwise
- first(Q) returns the first element of the queue (here a vertex)
- dequeue (Q) removes the first element of the queue
- enqueue (Q, s) adds the vertex s at the end of the queue

FUNCTION bfs(Vertex v)\{
Q an empty queue of vertices
mark[v]=true
enqueue (Q, v)
WHILE NOT(empty(Q))
$\mathrm{x}=\mathrm{first}(\mathrm{Q})$
dequeue (Q)
FOR $\mathrm{i}=1$ TO deg_o(x)
y=ith_succ (x,i)
$\mathrm{j}=\mathrm{num}$ (y)

IF NOT(mark[j])
mark[j]=true enqueue (Q, y)

Topological sorting An oriented acyclic graph (or DAG) is a convenient way to represent precedence constraints.

An oriented graph G is acyclic iff dfs on G generates no backward arc.
what is a feasible ordering?

7

7

Topological sorting

Modify dfs by adding nodes at the top of a stack when their processing is finished.
\rightarrow decreasing order of dates $f[\mathrm{v}]$
FUNCTION dfs_visit(Vertex v)\{
mark[num(v)]=true
FOR $j=1$ to $\operatorname{deg}(v)$
s=ith_succ (v,j)
$\mathrm{k}=\mathrm{num}$ (s)
IF NOT(mark[k]) dfs_visit(s)
push(Q,v)

DFS can be easily used to determine the connected components of a non-oriented graph (see exercice)

Strongly-Connected-Components (G)
1 call $\operatorname{DFS}(G)$ to compute finishing times $f[u]$ for each vertex u
2 compute G^{T}
3 call DFS $\left(G^{\mathrm{T}}\right)$, but in the main loop of DFS, consider the vertices in order of decreasing $f[u]$ (as computed in line 1)
for each vertex $u \in V[G]$
do color $[u] \leftarrow$ WHITE
$\pi[u] \leftarrow \mathrm{NIL}$
time $\leftarrow 0$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
then DFS-VISIT (u)
4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

```
DFS-VISIT (u)
color[u]}\leftarrow\mathrm{ GRAY
time \leftarrowtime +1
d[u]}\leftarrow\mathrm{ time
for each v\in\operatorname{Adj[u]}
    do if color [v] = WHITE
            then }\pi[v]\leftarrow
            DFS-VISIT(v)
color[u]}\leftarrow\mathrm{ BLACK
f[u]}\leftarrow\mathrm{ time }\leftarrow\mathrm{ time +1
```


DFS can be easily used to determine the connected components of a non-oriented graph (see exercice)

Strongly-Connected-Components (G)

1 call $\operatorname{DFS}(G)$ to compute finishing times $f[u]$ for each vertex u
2 compute G^{T}
3 call DFS $\left(G^{\mathrm{T}}\right)$, but in the main loop of DFS, consider the vertices in order of decreasing $f[u]$ (as computed in line 1)

```
for each vertex }u\inV[G
    do color[u]}\leftarrow\mathrm{ WHITE
        \pi[u]}\leftarrow\textrm{NIL
time }\leftarrow
for each vertex u\inV [G]
    do if color [u] = WHITE
        then DFS-VISIT (u)
DFS-VISIT (u)
color[u]}\leftarrow\mathrm{ GRAY
time \leftarrowtime +1
d[u]}\leftarrow\mathrm{ time
for each v\in\operatorname{Adj[u]}
        do if color [v] = WHITE
            then }\pi[v]\leftarrow
            DFS-VISIT(v)
color[u]}\leftarrow\mathrm{ BLACK
f[u]}\leftarrow\mathrm{ time }\leftarrow\mathrm{ time +1
```

4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

DFS can be easily used to determine the connected components of a non-oriented graph (see exercice)

Strongly-Connected-Components (G)

1 call $\operatorname{DFS}(G)$ to compute finishing times $f[u]$ for each vertex u
2 compute G^{T}
3 call $\operatorname{DFS}\left(G^{\mathrm{T}}\right)$, but in the main loop of DFS, consider the vertices in order of decreasing $f[u]$ (as computed in line 1)

```
for each vertex }u\inV[G
    do color [u] \leftarrowWHITE
```

 \(\pi[u] \leftarrow\) NIL
 time $\leftarrow 0$
for each vertex $u \in V[G]$
do if color $[u]=$ WHITE
then DFS-VISIT (u)
DFS-VISIT (u)
color $[u] \leftarrow$ GRAY
time \leftarrow time +1
$d[u] \leftarrow$ time
for each $v \in \operatorname{Adj}[u]$
do if color $[v]=$ WHITE
then $\pi[v] \leftarrow u$
DFS-VISIT (v)
color $[u] \leftarrow$ BLACK
$f[u] \leftarrow$ time \leftarrow time +1

4

output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

