
Algorithms and data structures

Claudine Chaouiya

Instituto Gulbenkian de Ciência
PhD Program in Computational Biology

Oeiras, PORTUGAL

chaouiya@igc.gulbenkian.pt

October 2008

Outline

1 Introduction
What’s an algorithm?
Abstract types vs data structures
Iteration, Induction, Recursion...
Problem classification and algorithm quality
Few mathematical complements - asymptotic notation
Few mathematical complements: Recurrence relations

2 Sequential data structures

3 Binary Trees

4 Graphs

Introduction What’s an algorithm?

Al-Khwarizmi (780-850), Khiva, Uzbekistan

A set of operating rules whose application allows
the resolution of a given problem through a finite
number of operations.

Example: Euclid’s algorithm (one of the oldest algorithms known, around 300

BC) calculates the greatest common divisor of two non-zero integers

FUNCTION GCD(a, b) FUNCTION GCD(a, b)

IF b = 0 RETURN a WHILE b 6= 0

ELSE RETURN GCG(b, a mod b) t := b

b := a mod b

a := t

RETURN a

3 / 87

Introduction What’s an algorithm?

We have

a problem Find the number of

an instance is defined by some data ’A’ in ”GAGATCAGACC”

resolution produces some results 4

A program is an implementation of an algorithm i.e. its translation into
a language ”understandable” by a computer

but... do not reduce algorithms to computational problem
resolution
an algorithm is independent of the programming language used to
implement it

4 / 87

Introduction What’s an algorithm?

Defining an algorithm:

a finite set of operations on a given amount of that must terminate
each operation must be: defined (non ambiguous) & effective (can be
performed by a computer)

Pseudo-code: informal language
Flowchart: graphical presentation

3 Control structures:

sequence

selection (if, if/else, switch)

repetition (while, do /
while, for)

5 / 87

Introduction What’s an algorithm?

Flowchart

6 / 87

Introduction What’s an algorithm?

Again... Euclid’s algorithm

7 / 87

Introduction What’s an algorithm?

Good principles (Structured programming)
- define the specification (what the algorithm does, not how it does)
- legibility and comments
- modularity
- avoid branching instruction (go to), use

loops while, for,

conditional instruction if - then - else

procedures or functions

- use recursion (recursivity), which allows short and clear description

8 / 87

Introduction Abstract types vs data structures

Abstract types: abstractions used to formulate problems (lists trees,
graphs...)
Data structures: concrete representations (implementations) of
abstract types.

we use real or integer in most (if not all) of programming languages as
abstract types (don’t care of their implementation).

the abstract type list is the primary type provided by LISP

Name List
Uses integer,element
Operations ith: (List,integer)→element

card:(List)→element
...

a contiguous representation

type LIST =array[1..N] of char

a linked representation

type LIST = ↑ cell;

cell=record val:char;

link:LIST

end;

9 / 87

Introduction Iteration, Induction, Recursion...

Recursivity:

applying a function as a part of the definition of that same function.

a base case(s), for which the solution is known → termination
condition,

a recursive step.

Factorial

0! = 1

n! = n(n − 1)! n > 0

Fibonacci numbers

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2 n > 1

10 / 87

Introduction Problem classification and algorithm quality

Given a problem −→ decidability (existence of an algorithm)

Termination problem: Does it exist an algorithm which answers YES or NO

to the question: ”P terminates on D” for any program P and any entry D

It has been proved that there is no algorithm to solve this problem
−→ correctness and termination ♠ Manfred Kerber’s course

−→ complexity

Travelling salesman problem (TSP): given a weighted non-oriented
complete graph with n nodes, find a minimal hamiltonian cycle.

Algorithm: enumerate all
hamiltonian cycles, choose the best

(n−1)!
2 hamiltonian cycles

n = 20→ 19 centuries on a computer
able to determine 106 cycles p/sec

TSP is a well-known representant of a class of problems classified as NP-hard.

11 / 87

Introduction Problem classification and algorithm quality

Given a problem −→ decidability (existence of an algorithm)

Termination problem: Does it exist an algorithm which answers YES or NO

to the question: ”P terminates on D” for any program P and any entry D

It has been proved that there is no algorithm to solve this problem
−→ correctness and termination ♠ Manfred Kerber’s course

−→ complexity

Travelling salesman problem (TSP): given a weighted non-oriented
complete graph with n nodes, find a minimal hamiltonian cycle.

Algorithm: enumerate all
hamiltonian cycles, choose the best

(n−1)!
2 hamiltonian cycles

n = 20→ 19 centuries on a computer
able to determine 106 cycles p/sec

TSP is a well-known representant of a class of problems classified as NP-hard.

11 / 87

Introduction Problem classification and algorithm quality

performance analysis, independently of implementation

comparison of algorithms

Complexity of an algorithm = time and/or memory space necessary for
its execution

A reference computer:

access (and storage) done in a fixed amount of time

one operation performed at a time

Execution time ∝] elementary operations

Examples:

1 search an item in a list → number of comparisons

2 sorting a list → number of comparisons and of moves

3 matrix product → number of product and sum operations

12 / 87

Introduction Problem classification and algorithm quality

To calculate the complexity (in time), count elementary operations,

sequence: add

conditional branching: upper-bound

loop:
∑

i .P(i), P(i) being the number of operations for the ith
execution of the lopp (i control variable of the loop)

function call: number of operations of the function

recursive function: solving recurrence relations
T (n) = f (T (k)), k < n.

13 / 87

Introduction Problem classification and algorithm quality

Example: the factorial function

FUNCTION fact(Integer n): Integer n {

p=1

FOR i=2 TO n

p=p*i

RETURN p

}

elementary operation: the product of 2 integers
∑

i=1...n 1 = n

FUNCTION fact(Integer n): Integer n {

IF (n==0) RETURN 1

ELSE RETURN n*fact(n-1)

}

T (0) = 0 and T (n) = T (n − 1) + 1, ∀n ≥ 1
easily solved: T (n) = n.

14 / 87

Introduction Problem classification and algorithm quality

Example: sequential search (an integer x in a list L of size n)

FUNCTION search(List L, Integer x) : Boolean {

i=1

WHILE (i<=n AND (x!=L[i])

i=i+1

IF (i>n) RETURN false

ELSE RETURN true

}

elementary operations: comparisons (one by iteration)
if x 6∈ L → n, otherwise → rank of x in L
Loop invariants: properties true at each iteration

at the 1st iteration j = 1
at the kth iteration j = k and ∀i = 1 . . . k − 1, L[i] 6= x

End condition(s):
if at the kth iteration k ≤ Card(L) and L[k] = x
if k = Card(L) + 1

15 / 87

Introduction Problem classification and algorithm quality

Example: sequential search (an integer x in a list L of size n)

FUNCTION search(List L, Integer x) : Boolean {

i=1

WHILE (i<=n AND (x!=L[i])

i=i+1

IF (i>n) RETURN false

ELSE RETURN true

}

elementary operations: comparisons (one by iteration)
if x 6∈ L → n, otherwise → rank of x in L
Loop invariants: properties true at each iteration

at the 1st iteration j = 1
at the kth iteration j = k and ∀i = 1 . . . k − 1, L[i] 6= x

End condition(s):
if at the kth iteration k ≤ Card(L) and L[k] = x
if k = Card(L) + 1

15 / 87

Introduction Problem classification and algorithm quality

Other performance criteria

1 memory size: usual compromise between space and time

2 simplicity: implementation and maintainability

3 adequacy to the data: e.g. for a sorting algorithm, is the list
almost sorted?

Dn set of entries of size n, CA(d) complexity of algorithm A for entry d :

best case complexity: MinA(n) = min{CA(d), d ∈ Dn}
worst case complexity: MaxA(n) = max{CA(d), d ∈ Dn}
average case complexity: AverA(n) =

∑
d∈Dn

p(d)CA(d),
p(d) probability to get entry d . If all entries are equally likely, then

AverA(n) =
1

Card(Dn)

∑
d∈Dn

CA(d).

MinA(n) ≤ AverA(n) ≤ MaxA(n), ∀n

16 / 87

Introduction Problem classification and algorithm quality

Other performance criteria

1 memory size: usual compromise between space and time

2 simplicity: implementation and maintainability

3 adequacy to the data: e.g. for a sorting algorithm, is the list
almost sorted?

Dn set of entries of size n, CA(d) complexity of algorithm A for entry d :

best case complexity: MinA(n) = min{CA(d), d ∈ Dn}
worst case complexity: MaxA(n) = max{CA(d), d ∈ Dn}
average case complexity: AverA(n) =

∑
d∈Dn

p(d)CA(d),
p(d) probability to get entry d . If all entries are equally likely, then

AverA(n) =
1

Card(Dn)

∑
d∈Dn

CA(d).

MinA(n) ≤ AverA(n) ≤ MaxA(n), ∀n

16 / 87

Introduction Problem classification and algorithm quality

Insertion sort

PROCEDURE INSERTION_SORT(List A)

FOR i = 1 to Card(A)-1

value = A[i]

j = i-1

WHILE j >= 0 AND A[j] > value

A[j + 1] = A[j]

j = j-1

A[j+1] = value

- The outer loop carried out n − 1 times.
- The inner loop carried out i times in the worst case; half that often on
average. The number of comparisons in the worst case is

n−1∑
i=1

i−1∑
j=0

1 =
n−1∑
i=1

i
n(n − 1)

2

In the average case it is n(n − 1)/4

17 / 87

Introduction Problem classification and algorithm quality

Insertion sort

PROCEDURE INSERTION_SORT(List A)

FOR i = 1 to Card(A)-1

value = A[i]

j = i-1

WHILE j >= 0 AND A[j] > value

A[j + 1] = A[j]

j = j-1

A[j+1] = value

- The outer loop carried out n − 1 times.
- The inner loop carried out i times in the worst case; half that often on
average. The number of comparisons in the worst case is

n−1∑
i=1

i−1∑
j=0

1 =
n−1∑
i=1

i
n(n − 1)

2

In the average case it is n(n − 1)/4

17 / 87

Introduction Problem classification and algorithm quality

Product of square matrices (n × n): C = AB

FUNCTION PRODUCT(Matrix A,B): Matrix {

FOR i=1 TO n

FOR j=1 TO n

C[i,j]=0

FOR k=1 TO n

C[i,j]=C[i,j]+A[i,k]*B[k,j]

RETURN C

}

Here, elementary operations are the multiplications of integers,

Min(n) = Aver(n) = Max(n) =
n∑
1

n∑
1

n∑
1

1 = n3

18 / 87

Introduction Problem classification and algorithm quality

Product of square matrices (n × n): C = AB

FUNCTION PRODUCT(Matrix A,B): Matrix {

FOR i=1 TO n

FOR j=1 TO n

C[i,j]=0

FOR k=1 TO n

C[i,j]=C[i,j]+A[i,k]*B[k,j]

RETURN C

}

Here, elementary operations are the multiplications of integers,

Min(n) = Aver(n) = Max(n) =
n∑
1

n∑
1

n∑
1

1 = n3

18 / 87

Introduction Problem classification and algorithm quality

Sequential search (an integer x in a list L of size n)

FUNCTION search(List L, Integer x) : Boolean {

i=1

WHILE (i<=n AND (x!=L[i])

i=i+1

IF (i>n) RETURN false

ELSE RETURN true

}

Elementary operations are comparisons, Min(n) = 1 and Max(n) = n.
What about the average case knowing that: p(x ∈ L) = q and if x ∈ L,
p(L[i] = x) = p(L[j] = x), ∀i , j = 1, . . . , n

•Dn,i set of entries s.t. L[i] = x , p(Dn,i) = q
n ,

•Dn,0 set of entries s.t. x 6∈ L, p(Dn,0) = 1− q,
•cost(Dn,i) = i , for i 6= 0 and cost(Dn,0) = n,

Aver(n) =
n∑

i=0

p(Dn,i)∗cost(Dn,i) = (1−q)n+
q

n

n∑
i=1

i = (1−q)n+
q(n + 1)

2
.

19 / 87

Introduction Problem classification and algorithm quality

Sequential search (an integer x in a list L of size n)

FUNCTION search(List L, Integer x) : Boolean {

i=1

WHILE (i<=n AND (x!=L[i])

i=i+1

IF (i>n) RETURN false

ELSE RETURN true

}

Elementary operations are comparisons, Min(n) = 1 and Max(n) = n.
What about the average case knowing that: p(x ∈ L) = q and if x ∈ L,
p(L[i] = x) = p(L[j] = x), ∀i , j = 1, . . . , n

•Dn,i set of entries s.t. L[i] = x , p(Dn,i) = q
n ,

•Dn,0 set of entries s.t. x 6∈ L, p(Dn,0) = 1− q,
•cost(Dn,i) = i , for i 6= 0 and cost(Dn,0) = n,

Aver(n) =
n∑

i=0

p(Dn,i)∗cost(Dn,i) = (1−q)n+
q

n

n∑
i=1

i = (1−q)n+
q(n + 1)

2
.

19 / 87

Introduction Few mathematical complements - asymptotic notation

Asymptotic notations

Bounding the asymptotical execution time of an algorithm
A fonction IN → IN: (size of the problem) → (number of operations)
• Notation Θ (asymptotically tight bound):
Θ(g(n)) = {f (n) : ∃c1, c2 > 0,∃k ,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n),∀n ≥ k}
f ∈ Θ(g(n) is written f (n) = Θ(g(n))

source: http://www.nist.gov/dads/

Examples: 1/2n2 − 3n = Θ(n2) but n3 6= Θ(n2)
For all polynomial P(n) =

∑d
i=0 ain

i , ad > 0, P(n) = Θ(nd).
20 / 87

Introduction Few mathematical complements - asymptotic notation

• Notation O (asymptotic upper bound):
O(g(n)) = {f (n) : ∃c1, k > 0, 0 ≤ f (n) ≤ cg(n),∀n ≥ k}

• Notation Ω (asymptotic lower bound):
Ω(g(n)) = {f (n) : ∃c1, k > 0, 0 ≤ cg(n) ≤ f (n), ∀n ≥ k}

21 / 87

Introduction Few mathematical complements - asymptotic notation

Additional remarks

Complexity of some algorithms depends on several parameters:
e.g. on graphs, numbers of nodes and edges

f (n, p) = O(g(n, p))⇔ ∃c ∈ IR∗+, ∃(n0, p0) ∈ IN2 s.t.

∀n > n0, ∀p > p0, f (n, p) ≤ g(n, p).

g = O(g) and g = Θ(g)

f = O(g), g = O(h) ⇒ f = O(h)

f = O(g)⇒ λf = O(g), (λ ∈ IR∗+)

f = Θ(g)⇒ g = Θ(f)

f = Θ(g), g = Θ(h) ⇒ f = Θ(h)

f = Θ(g)⇒ λf = Θ(g), (λ ∈ IR∗+)

f1 = O(g1), f2 = O(g2) ⇒ f1 + f2 = O(max(g1, g2)) (idem for Θ)

f1 and f2 s.t. f1 − f2 ≥ 0,

f1 = O(g1), f2 = O(g2) ⇒ f1 − f2 = O(g1)

f1 = Θ(g1), f2 = Θ(g2), g2 = O(g1), g1 is not O(g2) ⇒ f1 − f2 = Θ(g1)

f1 = O(g1), f2 = O(g2) ⇒ f1f2 = O(g1g2) (idem for Θ)

22 / 87

Introduction Few mathematical complements - asymptotic notation

Determine if n is odd or even O(1) constant
Finding an item in a sorted array using binary search O(logn) logarithmic
Finding an item in an unsorted list O(n) linear
Sorting a list with heapsort O(nlogn) quasilinear
Sorting a list with insertion sort O(n2) quadratic
Multiplying two n × n matrices by a simple algorithm O(n3) cubic
Finding the shortest path on a weighted directed graph O(nd), d > 1 polynomial
Exact solution of the travelling salesman problem O(cn) exponential
(shortest path in a network, visiting each node once)

23 / 87

Introduction Few mathematical complements: Recurrence relations

Execution time of a recursive algorithm generally defined as a recurrence
relation: cost T (n) for an entry of size n is function of T (p), p < n.
Example: function fact: T (0) = 0 and T (n) = T (n − 1) + 1, ∀n ≥ 1

A recurrence relation always composed by two equations: 1/ for the
base case, and 2/ for the general case

1 Linear recurrence relations of order k :

T (n) = f (n,T (n − 1), . . . ,T (n − k)) + g(n)

with, k ≥ 1 a constant (integer), f linear function of
T (i), i = n − k . . . , n − 1, g a function of n.

2 Partition recurrence relations:

T (n) = aT (n/b) + d(n)

with, a, b constants, d a function of n.

24 / 87

Introduction Few mathematical complements: Recurrence relations

Some examples of resolution

Linear recurrence relations, write the relation for n, n − 1, . . . , 1,
multiply by a convenient factor, sum and simplify:
T (n) = T (n − 1) + 2n, T (0) = 1

T (n) = T (n − 1) + 2n

T (n − 1) = T (n − 2) + 2n−1

T (n − 2) = T (n − 3) + 2n−2

.
T (1) = T (0) + 2
T (0) = 1

⇒ T (n) =
∑n

i=0 2i = 2n − 1

25 / 87

Introduction Few mathematical complements: Recurrence relations

Some examples of resolution

Linear recurrence relations, write the relation for n, n − 1, . . . , 1,
multiply by a convenient factor, sum and simplify:
T (n) = T (n − 1) + 2n, T (0) = 1

T (n) = T (n − 1) + 2n

T (n − 1) = T (n − 2) + 2n−1

T (n − 2) = T (n − 3) + 2n−2

.
T (1) = T (0) + 2
T (0) = 1

⇒ T (n) =
∑n

i=0 2i = 2n − 1

25 / 87

Introduction Few mathematical complements: Recurrence relations

Some examples of resolution

Partition recurrence relations, using a recursive tree

T (n) = 2T (n/2) + n2,T (0) = cste

Let assume n = 2p and cste = 0

26 / 87

Outline

1 Introduction

2 Sequential data structures
Generalities
Search, insertion, deletion
Queues and stacks
Sorting

3 Binary Trees

4 Graphs

Sequential data structures

Sequential data structures

28 / 87

Sequential data structures Generalities

Sequential structures or Lists (linked and arrays)
Finite sequence of elements of a given type.
Operations:

insertion, deletion

lookup

concatenation...

Arrays:
Set of elements accessible by their index.
Generally, all elements have the same type (e.g. array of integers)
Static arrays (fixed size) versus dynamic arrays
Constant access time (contiguous storage, and index access)
Not adequate for insertion or deletion

29 / 87

Sequential data structures Generalities

Linked lists

are recursive structures:
A list is either the empty list, or it is a head (an element) followed by a
tail (a list).
Singly-linked list has one link per node that points to the successor in
the list, or to a null value (or empty list) if it is the last node.

Doubly-linked list has two links per node that point to the predecessor
in the list, or to a null value it is the first node, and to the successor, or
to a null value if it is the last node.

Circularly-linked list is a singly or doubly linked list s.t. the first and
final nodes are linked together.

30 / 87

Sequential data structures Search, insertion, deletion

Search, insertion, deletion
Search
Searching an element in an array:

FUNCTION search(Elt x, Array T): Integer p {

p=0

WHILE (p<card(T) AND T[p]<> x)

p=p+1

if (p<card(T)) RETURN p

else RETURN -1

}

FUNCTION search(Elt x, Array T): Integer p {

p=0

WHILE (p<card(T) AND T[p]< x)

p=p+1

if (p<card(T) AND T[p]=x) RETURN p

else RETURN -1

}

worst case x /∈ T (Ω(n)), best case x = T [0] (O(1))
31 / 87

Sequential data structures Search, insertion, deletion

Search

Searching an element in a singly-linked list:

FUNCTION search(Elt x, List T): Integer p {

p=0

L=T

WHILE (L.succ<>null AND L.data<>x)

L=L.succ, p=p+1

if (L.data=x) RETURN p

else RETURN -1

}

32 / 87

Sequential data structures Search, insertion, deletion

Insertion, deletion
Inserting (deleting) an element in an array:

find the position

move remaining elts forward (backwards)

insert delete)

Inserting (deleting) an element in a linked list:

find the position

insert (delete)

33 / 87

Sequential data structures Search, insertion, deletion

Insertion

FUNCTION insert(Elt x,Integer n, List L){

p=create(L,x,null,null)

IF (L=null) L=p

ELSE if(n=0)

p.succ=L, L.pred=p, L=p

ELSE

q=L, i=0

WHILE(q.succ<>null AND i<n)

q=q.succ, i=i+1

IF (i=n)

p.pred=q.pred, p.succ=q, q.pred=p

ELSE

p.pred=, q.succ=p

What happens if n > card(L)?

What happens if n < 0?

34 / 87

Sequential data structures Queues and stacks

Queues and stacks
Insertion (and deletion) allways done at the same point:

35 / 87

Sequential data structures Sorting

Sorting

Insertion sort already seen.

PROCEDURE INSERTION_SORT(List A)

FOR i = 1 to Card(A)-1

value = A[i]

j = i-1

WHILE j >= 0 AND A[j] > value

A[j + 1] = A[j]

j = j-1

A[j+1] = value

Simple to implement

Efficient if the number of elements is small

average time is n2/4, linear in the best case

36 / 87

Sequential data structures Sorting

Bubble sort
Probably the most inefficient sorting algorithm in common usage!

FUNCTION bubble_sort(List A)

FOR i=0 TO card(N)-2

FOR j=N-1 DOWNTO i

IF A[j-1]>A[j]

swap(A[j-1], A[j])

What are the best and worst cases? Why is it in Θ(n2)?
How could you improve it? What are then the best and worst cases
orders?

37 / 87

Sequential data structures Sorting

Merge sort

A divide-and-conquer algorithm. Given a problem P of size n

base case direct solution for P when n is small enough,

divide break down P into two or more sub-problems of size
q < n,

conquer determine the solution of the sub-problems

combine the solution of P(n) is a combination of the
solutions of the sub-problems.

Let n be the size of the list:

1 if n = 0 or 1, the list is sorted;

2 if n > 1, divide the list into 2 sublists of about n/2;

3 sort the 2 sublists recursively (re-applying merge sort);

4 merge the 2 sublists back into one sorted list.

38 / 87

Sequential data structures Sorting

Merge sort

FUNCTION merge_sort(List A,Integer left,right){

IF (left<right)

middle=(left+right) DIV 2

merge_sort(A,left,middle)

merge_sort(A,middle+1,right)

merge(A,left,right)

}

from Wikipedia
39 / 87

Sequential data structures Sorting

Merging pseudo-code

FUNCTION merge(Array A; Integer left,mid,right){

FOR (i=left TO mid)

aux[i]=A[i]

FOR (i=right DOWNTO mid+1)

aux[right+mid+1-i]=A[i]

i=left, j=right

FOR (k=left TO right)

IF (aux[i]<aux[j])

A[k]=aux[i], i=i+1

ELSE

A[k]=aux[j], j=j-1

}

What is the cost of merge for an array of n elements? What is the cost
of the merge-sort? (you might assume that n = 2p)

40 / 87

Sequential data structures Sorting

Quick sort
Let n be the size of the list, and left = 0, right = n − 1

1 divide the list from left to right into 2 sublists s.t. all elements of
the first list are smaller all elements of the second, call mid the
position of the partition;

2 conquer by recursively sorting the two sublists (from left to
mid − 1, from mid + 1 to right);

3 if right − left = 0 do nothing!

quick_sort(Array A; Integer L,R){

IF (L<R)

M=partition(A,L,R)

quick_sort(A,L,M-1)

quick_sort(A,M+1,R)

}

41 / 87

Sequential data structures Sorting

quick_sort(Array A; Integer L,R){

IF (L<R)

M=partition(A,L,R)

quick_sort(A,L,M-1)

quick_sort(A,M+1,R)

}

partition(Array A; Integer L,R):Integer M{

pivot=A[L], i=L+1, j=R

WHILE (A[i]<=pivot) i=i+1

WHILE (A[j]>=pivot) j=j-1

WHILE (i<j)

swap(A[i],A[j])

WHILE (A[i]<=pivot) i=i+1

WHILE (A[j]>=pivot) j=j-1

swap(A[L],A[j])

RETURN M=j

}

42 / 87

Sequential data structures Sorting

What happens if pivot is the smallest element?

What would be a good property for the pivot?

What is the worst case? In this case, what is the order of the
quick-sort?

On average, the quick-sort performs in O(n lg n) (number of
comparisons.)

Prove that the best case is in Θ(nlg n).

43 / 87

Sequential data structures Sorting

ADDENDUM on the resolution of recurrence relations

Theorem: Let consider a ≥ 1 and b > 1, 2 constants, and f (n) a
function, and let T (n) defined for positive integers by:

T (n) = aT (n/b) + f (n),

where n/b is either bn/bc either dn/be. Then, T (n) can be
asymptotically bounded as follows:

1 If f (n) = O(nlogba−ε) with ε > 0, then T (n) = Θ(nlogba).

2 If f (n) = Θ(nlogba), then T (n) = Θ(nlogba lg n).

3 If f (n) = Ω(nlogba+ε) with ε > 0, and if af (n/b) ≤ cf (n) for a
constant c < 1 and n large enough, then T (n) = Θ(f (n)).

44 / 87

Sequential data structures Sorting

In all cases, compare f (n) with nlogba. The solution is determined by the maximum
of these 2 functions:

nlogba is greater, the solution is T (n) = Θ(nlogba).

both functions have the same “size”, the solution is multiplied by a
logarithmic factor: T (n) = Θ(nlogba lg n) = Θ(f (n) lg n).

f (n) is greater, T (n) = Θ(f (n) (plus a regularity condition on f)..

These 3 cases do not cover all possibilities: T (n) = 2T (n/2) + n lg n (f is not

polynomially greater than nlogba = n since (nlg n)/n = lg n is asymptotically less

than nε, whatever the positive constante ε.

Example:
T (n) = 9T (n/3) + n: f (n) = n, nlogba = n2, f (n) = O(nlog39−ε), with
ε = 1, ⇒ T (n) = Θ(n2).
see Cormen et al for details and proof of the theorem

45 / 87

Outline

1 Introduction

2 Sequential data structures

3 Binary Trees
Representations of binary trees
Traversing trees
Binary Search Trees

4 Graphs

Binary Trees

Binary trees

A binary tree is empty (∅) or on the form B =< o,B1,B2 > where B1

and B2 are disjoint binary trees and o is a node called root.

Binary tree representing the arithmetic expression
(x − (2 ∗ y)) + ((x + (y/z)) ∗ 3)

Note that < o, < o, ∅, ∅ >, ∅ > and < o, ∅, < o, ∅, ∅ >> are different.

47 / 87

Binary Trees

Basic operations on binary trees

test if a tree is empty

access the root

access the left child (B1)

access the right child (B2)

48 / 87

Binary Trees

Measures on binary trees

a node has at most 2 children; if its has no child, it is a leaf, it is a
single node if it has a unique child, an internal node otherwise;

the size of a BT is its number of nodes:

size(∅) = 0, size(< o,B1,B2 >) = 1 + size(B1) + size(B2)

the depth of a node n in < o,B1,B2 > is:

depth(n) = 0 if n = o

depth(n) = 1 + depth(p)where p s.t.n child of p

the depth (or height) of a tree is given as the maximum of its
nodes depth.

the traversing length of a tree B is the sum of its nodes depths:

LC (B) =
∑
n∈B

h(n)

The total number of BT of size n is bn = 1
n+1

(2n
n

)
.

49 / 87

Binary Trees

Special cases

A degenerated tree is a BT where for each parent node, there is
only one associated child node (⇒ in performance measures, the
BT behaves like a linked list).

A full binary tree is a BT in which every node has zero or two
children.

A complete binary tree is a full BT in which all leaves are at the
same depth.

A perfect binary tree is a BT for which all levels are complete,
but possibly its last level (in this case, the leaves are grouped at
the left).

50 / 87

Binary Trees

How many degenerated BTs of size 3?

How many full BTs of sizes 3, 4 and 5?

Give a complete BT of size 7.

Give a perfect BT with 5 nodes.

Give the total number of nodes in a complete BT of depth n.

Prove that, for a BT of n nodes, its depth h verifies:

blg nc ≤ h ≤ n − 1

.

51 / 87

Binary Trees

Occurrences and hierarchical numbering

Occurrence of a node: a string of 0 and 1, which characterizes the
path from the root to that node.

The occurrence of the root is the empty string.

If the occurrence of a node is µ, its left child’s occurrence is µ0, its
right child’s occurrence is µ1.

In a complete binary tree, the hierarchical numbering attributes an
increasing natural number (beginning with 1) all nodes from the root,
level after level, and from the left to the right on each level.

52 / 87

Binary Trees

Let consider a node with number i , its left child has number 2i and its
right child 2i + 1.

Prove that if a node in a complete tree has occurrence µ and for
hierarchical numbering i , then i = 2blg ic + m, where m is the integer
which binary representation is µ.

53 / 87

Binary Trees Representations of binary trees

Representations of binary trees
Reproducing the recursive definition of BT:

54 / 87

Binary Trees Representations of binary trees

Representations of binary trees
Or using an array:

55 / 87

Binary Trees Representations of binary trees

Storing perfect binary trees

At most one internal node with a unique left sub-tree and this node is on the last

level but one.

Compact sequential representation based on the hierarchical numbering:
If a node is numbered i , its left child is numbered 2i , its right child
2i + 1.

Proof by induction.
Using the hierarchical numbering:

2 ≤ i ≤ n ⇒ the father of node i is i div 2

1 ≤ i ≤ n div 2 ⇒ the left child of node i is 2i , its right child is 2i + 1

Note: this representation can be used also for general BT. What happens e.g. for a

degenerated tree? 56 / 87

Binary Trees Traversing trees

Traversing trees
Depth-first traversal

57 / 87

Binary Trees Traversing trees

Depth-first traversal

FUNCTION traverse(BT A){

TREATMENT1

IF (A.left<>null) traverse(A.left)

TREATMENT2

IF (A.right<>null) traverse(A.right)

TREATMENT3

}

pre-order (prefix): only TREATMENT1

in-order (infix): only TREATMENT2

post-order (suffix): only TREATMENT3

Note that one cannot recover the hierarchical numbering with this
traversal.

58 / 87

Binary Trees Binary Search Trees

Binary Search Trees (BST)
Binary tree data structure such that a total order is defined on the
values attached to the nodes and:

left subtree of a node contains only values less than the node’s
value;
right subtree of a node contains only values greater than or equal
to the node’s value.

An example (from Wikipedia)

=⇒ related sorting algorithms and search algorithms such as in-order
traversal can be very efficient.

59 / 87

Binary Trees Binary Search Trees

Pseudo-code for the search in a BST

FUNCTION search(BT A,Integer val):Boolean{

IF (A=null) RETURN false

ELSE IF (A.value<val)

RETURN search(A.right,val)

ELSE IF (A.value>val)

RETURN search(A.left,val)

ELSE IF (A.value=val) RETURN true

ELSE RETURN false

}

What is the worst case for this search procedure?
Write the pseudo-code for the insertion of a new value in a BST.

60 / 87

Outline

1 Introduction

2 Sequential data structures

3 Binary Trees

4 Graphs
Basic definitions
Abtract data type
Data structures
Exploring graphs
Topological sorting
(Strongly) connected components

Graphs Basic definitions

A huge number of real life problems expressed in terms of relational
structures.

A graph G = (X , Γ) is defined by a set X (of vertices) and a function Γ :→ X
(the arcs).

Alternatively a graph is denoted G = (X ,E), where E is the set of arcs.
A subgraph of G = (X , Γ) is a graph (A, ΓA) where A ⊂ X and ΓA defined by
∀x ∈ A, ΓAx = Γx ∩ A
A partial graph of G = (X , Γ) is a graph (X ,∆) where ∀x ,∆x ⊂ Γx .

62 / 87

Graphs Basic definitions

Given (X ,E),

for an arc u = (x , y) ∈ E , x is the initial vertex (source), y the
terminal vertex (target), (y is said to be a successor of x),

two arcs are adjacent if they are different and share a common
vertex,

two vertices x , y ∈ X are adjacent if x 6= y and (x , y) ∈ E or
(y , x) ∈ E ,

the indegree degi (x) of x ∈ X is the cardinal of {(y , x) ∈ E},
the outdegree dego(x) of x ∈ X is the cardinal of {(x , y) ∈ E},
the degree of x is deg(x) = degi (x) + dego(x).

63 / 87

Graphs Basic definitions

Given (X ,E),

a path is a sequence (u1, . . . un) of arcs in E , s.t. the target of ui is
the source of ui+1 (i = 1 . . . n − 1),

the length of a path is the number of its arcs,

a path (u1, . . . un) is simple if ui 6= uj , ∀i , j = 1, . . . n, i 6= j ,
otherwise, it is composite,

alternatively a path (u1, . . . un) which meets the vertices
x1, . . . xn+1 is denoted [x1, . . . xn+1],

a path is elementary if is does not meet the same vertex twice,

a circuit is a finite path [x1, . . . xk] in which x1 = xk ,

a loop is a circuit of length 1 (a single arc (x , x)),

if Γ is reflexive (i.e. (x , y)⇒ (y , x) ∈ E , the graph is said
non-oriented or symmetric,

an edge, is a set of two vertices {x , y} s.t. (x , y) ∈ E or
(y , x) ∈ E) −→ chains and cycles.

64 / 87

Graphs Basic definitions

Given G = (X ,E),

G is complete if (x , y) 6∈ E ⇒ (y , x) ∈ E ,

G is strongly connected if ∀x , y ∈ X there is a path joining x
and y ,

G is connected if ∀x , y ∈ X there is a chain joining x and y ,

65 / 87

Graphs Basic definitions

a tree is a connected non-oriented graph without cycle,

a root in an oriented graph is a vertex r s.t. every vertex can be
reached from r ,

an arborescence is an oriented graph which has a root and s.t. the
corresponding non-oriented graph is a tree.

Given a graph G = (X ,E), non-oriented with |X | = n, the following
properties are equivalent:

1 G is connected without cycle (a tree),

2 G is connected and if an edge is deleted it is no more connected,

3 G is connected and has n − 1 edges,

4 G has no cycle, and the addition of one edge creates a cycle,

5 G has no cycle and has n − 1 edges,

6 all pair of vertices is connected by a unique chain.

66 / 87

Graphs Abtract data type

To specify a graph, give: the set of vertices and the set of arcs (pairs of
vertices).

vertices are arbitrary numbered

Basic operations over vertices:
node : integer −→ vertex
arc : vertex,vertex −→ Boolean
num : vertex −→ integer
deg o : vertex −→ integer
ith succ : vertex, integer −→ vertex

by convention, successors of a vertex are numbered in an increasing
order: i < j ⇒ num(ith succ(x , i)) < num(ith succ(x , j)).

Scheme often encountered to process all successors of a vertex x:
FOR i=1 TO deg o(x)

process(ith succ(x,i))

67 / 87

Graphs Abtract data type

When the graph can evolve, one has to consider

Basic operations over the graph:

card : graph −→ integer
empty graph : −→ graph
add node : graph −→ graph
add arc : vertex,vertex,graph −→ graph
arc : vertex,vertex,graph −→ Boolean
deg i : vertex, graph −→ integer
ith succ : vertex,integer,graph −→ vertex

68 / 87

Graphs Data structures

Using contiguous representations (arrays)

called adjacency matrix

The case of weighted graphs

space in θ(n2) with n = card(G)

69 / 87

Graphs Data structures

Using linked structures (lists)

Using the lists of successors for each vertex (called adjacency lists)

space in Θ(n + p) with n = card(G), p =
∑

i=1...n deg o(node(i))

70 / 87

Graphs Exploring graphs

Depth First Search, recursive version

FUNCTION dfs(Graph G){

FOR i=1 to card(G)

mark[i]=false

FOR i=1 to card(G)

IF NOT(mark[i])

dfs_visit(node(i))

}

FUNCTION dfs_visit(Vertex v){

mark[num(v)]=true

FOR j=1 to deg(v)

s=ith_succ(v,j)

k=num(s)

IF NOT(mark[k])

dfs_visit(s)

}

s1, s3, s2, s6, s5, s7, s4, s9, s8
Complexity analysis:

adjacency matrix: Θ(n2)
successors lists: Θ(max(n, p))

71 / 87

Graphs Exploring graphs

Depth First Search, recursive version

FUNCTION dfs(Graph G){

FOR i=1 to card(G)

mark[i]=false

FOR i=1 to card(G)

IF NOT(mark[i])

dfs_visit(node(i))

}

FUNCTION dfs_visit(Vertex v){

mark[num(v)]=true

FOR j=1 to deg(v)

s=ith_succ(v,j)

k=num(s)

IF NOT(mark[k])

dfs_visit(s)

}

s1, s3, s2, s6, s5, s7, s4, s9, s8
Complexity analysis:

adjacency matrix: Θ(n2)
successors lists: Θ(max(n, p)) 71 / 87

Graphs Exploring graphs

FUNCTION dfs_visit(Vertex v){

mark[num(v)]=true

*** PROCESS1(v) ***

FOR j=1 to deg(v)

s=ith_succ(v,j)

k=num(s)

IF NOT(mark[k])

dfs_visit(node[k])

*** PROCESS2(v) ***

}

Two classical orders for graph
exploration (as for trees):

prefix order (PROCESS1): s1, s3,
s2, s6, s5, s7, s4, s9, s8

suffix order (PROCESS2): s2, s6,
s3, s5, s7, s1, s9, s4, s8

72 / 87

Graphs Exploring graphs

Arc classification
A spanning tree of a connected graph G is:

(informally) a selection of edges that form a tree spanning every vertex,

a maximal set of edges of G that contains no cycle,

a minimal set of edges that connect all vertices,

DFS produces a spanning tree (or a forest if G is not connected) and
allows a classification of the arcs:

forward edges from a node to one successor,

backward edges from a node to one predecessor,

cross edges none of the previous ones,

tree edges belong to the spanning tree itself, classified separately from
forward edges.

If the graph is non-oriented, all of its edges are tree or backward edges.

A graph G is acyclic iff dfs does not generate any backward edge.

73 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

74 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

75 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

76 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

77 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

78 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

79 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

80 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

81 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

(u, v) is a forward edge (grey or green) if d [u] < d [v]
(u, v) is a cross edge (red) if d [u] > d [v]

82 / 87

Graphs Exploring graphs

Adapted algorithm (from Cormen et al.)

Gπ = (S ,Aπ), with Aπ = {(π[v], v), v ∈ S and π[v] 6= NIL} is the spanning

forest generated by dfs

83 / 87

Graphs Exploring graphs

Breadth First Search
Unlike dfs, bfs is not naturally recursive.
Uses a Queue (a list with a FIFO policy) with the basic operations:
• empty(Q) is true if Q is empty, false otherwise
• first(Q) returns the first element of the queue (here a vertex)
• dequeue(Q) removes the first element of the queue

• enqueue(Q,s) adds the vertex s at the end of the queue

FUNCTION bfs(Vertex v){

Q an empty queue of vertices

mark[v]=true

enqueue(Q,v)

WHILE NOT(empty(Q))

x=first(Q)

dequeue(Q)

FOR i=1 TO deg_o(x)

y=ith_succ(x,i)

j=num(y)

IF NOT(mark[j])

mark[j]=true

enqueue(Q,y)

}
84 / 87

Graphs Topological sorting

Topological sorting An oriented acyclic graph (or DAG) is a convenient

way to represent precedence constraints.

An oriented graph G is acyclic iff dfs on G generates no backward arc.

what is a feasible ordering?

85 / 87

Graphs Topological sorting

Topological sorting
Modify dfs by adding nodes at the top of a stack when their processing
is finished.

→ decreasing order of dates f[v]

FUNCTION dfs visit(Vertex v){
mark[num(v)]=true

FOR j=1 to deg(v)

s=ith succ(v,j)

k=num(s)

IF NOT(mark[k]) dfs visit(s)

push(Q,v)

}

86 / 87

Graphs (Strongly) connected components

DFS can be easily used to determine the connected components of a
non-oriented graph (see exercice)

87 / 87

Graphs (Strongly) connected components

DFS can be easily used to determine the connected components of a
non-oriented graph (see exercice)

87 / 87

Graphs (Strongly) connected components

DFS can be easily used to determine the connected components of a
non-oriented graph (see exercice)

87 / 87

	Introduction
	What's an algorithm?
	Abstract types vs data structures
	Iteration, Induction, Recursion...
	Problem classification and algorithm quality
	Few mathematical complements - asymptotic notation
	Few mathematical complements: Recurrence relations

	Sequential data structures
	Generalities
	Search, insertion, deletion
	Queues and stacks
	Sorting

	Binary Trees
	Representations of binary trees
	Traversing trees
	Binary Search Trees

	Graphs
	Basic definitions
	Abtract data type
	Data structures
	Exploring graphs
	Topological sorting
	(Strongly) connected components

